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Abstract

The typical smartphone user has many thousands of photos in their personal collection.

Photo acquisition is effortless, and the next challenge is in devising methods to easily edit

such large collections. Specifically, we need manipulation algorithms that are powerful

enough for experts, yet simple for novices to master.

We identified three key directions to empower novice users with expert-level editing

capabilities while maintaining an overall simplicity in the process. Those directions are

(1) better selection masks, (2) high-level goal-centric algorithms and (3) domain specific

algorithms. In this thesis we give examples from each category.

Given a photo, a novice user will typically either not edit it at all, or apply a sim-

ple global operation such as exposure correction. In contrast, a professional photo editor

might perform local edits, specifying a selection mask to limit the operation to specific

photo regions, or combining regions from several photos into a single composition. To

ease selection mask creation we present a new patch embedding technique that allows for

single-click selection masks.

Novices often think in terms of goals (e.g. improve lighting, de-clutter photo) and less

in technical terms such as color spaces and image layers. One example of a high-level

goal is the removal of distracting elements from photos. The task is motivated by the

way professional photographers operate. They carefully frame the scene and might move

objects around in order to stage the perfect photo. We define “photo distractors” as the

elements that, if removed, would improve the photo. Using a simple slider interaction we

allow users to automatically remove such distractors from photos.

It is at times useful to tailor solutions to specific photo types. As an example we show

that, specifically for human heads, simple controls can induce sophisticated edits. Given a

single portrait photo as input, we can change the pose of the head and the camera distance.

This allows users to correct the “selfie effect”, i.e. big noses and small ears or to transform

distant photos into selfies.
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We conclude by discussing how each of these directions can be further explored to

enable better image editing tools for novices.
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Chapter 1

Introduction

“Consequently, in the chain of reactions accompanying the creative act, a link is missing. This gap which

represents the inability of the artist to express fully his intention, this difference between what he intended to

realize and did realize, is the personal ‘art coefficient’, contained in the work.”

— Marcel Duchamp, The Creative Act (1957)

The earliest known surviving photograph made in a camera, called View from the Win-

dow at Le Gras, was taken by Joseph Nicéphore Niépce in 1826 or 1827 [77]. Niépce

created it by exposing a chemically coated pewter plate for over eight hours. It is not much

to look at. Over the intervening decades, photo quality has improved, while exposure time

decreased and cameras became portable. Photography was no longer just a technical won-

der, it was becoming an expressive tool and an art form, with its own lingo, techniques

and community. Numerous photography books teach the photographer what to do when

capturing the photo in order to improve the results [2, 13, 25, 29]. In the days of film

photography, post-processing of photos was much less common and the scene inscribed on

film was often the final product.

One of the first digital images was scanned by Russell Kirsch in 1957 at the National

Bureau of Standards. The first digital camera was created by Steven Sasson in 1975 while

working for Eastman Kodak [63]. Today there are more than 5 billion cameras in the world,
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most of which are camera phones. Moving from film to pixels opened up new possibilities

for digital manipulation of photos. Computational photography [64, 84] uses computa-

tion instead of (or alongside) traditional optics to create better photos or to produce photos

which are unattainable under real-world physical constraints. Computational photography

methods such as high dynamic range imaging [85], gigapixel mosaicing [59], light field

photography [76], coded apertures [60], image re-targeting [8], recoloring [26] and image-

based rendering [70] expand the expressive range of photos. With the prevalence of digital

cameras and as smartphones couple cameras with substantial local processing, computa-

tional techniques are playing an increasingly important role in photography.

The typical smartphone user has tens or even hundreds of thousands of photos in their

personal photo collection. Given all those photos, most people seldom give their photos a

second glance after acquiring them. We have reached a point where photo acquisition is

trivial, and the next challenge is in devising methods to easily edit large photo collections.

Specifically, we need manipulation algorithms which are powerful enough for experts, yet

simple for novices to master.

Given a photo, a novice user will typically either not edit it at all, or apply a simple

global operation such as exposure correction. Such corrections can either be fully automatic

(“auto-enhance” features are common in modern photo editing suites) or require the user to

move a slider or two. In contrast, a professional photo editor will also perform local edits,

specifying a selection mask to limit the operation to specific photo regions, or combining

regions from several photos into a single composition. If we want to push novices towards

sophisticated edits, the first step is to supply them with a simple selection mechanism. In

Chapter 2 we describe a new patch embedding technique which allows single-click mask

selection. The user clicks on a single pixel within a region they are interested in, and the

full region is automatically selected. The selection is texture-aware, meaning that even for

highly textured regions such as a plaid shirt, the user can click a single pixel on the shirt

and it will be selected, despite large differences in color values and shading.
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Another strategy for empowering novices with sophisticated photo editing capabilities

is to fully automate high level goals. Automatic enhancement features in tools such as

Apple Photos or Google Photos are used due to the simplicity of a single-click operation.

However, they are mostly limited to the same global editing operations that fix exposure

and color, or add an interesting photo filter. We would like to keep the simple single-click

or single-slider interaction, but use it to achieve higher level goals. In Chapter 3 we give

one example of such a goal — removing distracting elements from photos. The task is

motivated by the way professional photographers operate. They usually carefully control

the scene, either by using a studio or by a deliberate selection of the photo’s backdrop,

viewing angle and frustum. In many cases a professional will move objects around in order

to stage the perfect scene for a photo. We define “photo distractors” as the elements that,

if removed, would improve the photo. Using a simple slider interaction we allow users to

automatically remove such distractors from photos.

In order to achieve both simplicity and sophistication of results, it is at times useful to

tailor solutions to a specific category of photos. For example, in Chapter 4 we show that

tailoring a solution for human heads (arguably one of the most important object classes)

allows for simple control over sophisticated edits. Given a single portrait photo as input,

we allow a user to change the pose of the head and the camera distance. This allows us to

correct the “selfie effect”, i.e. big noses and small ears or to transform distant photos into

selfies.

The bulk of the material in Chapters 3 and 4 were presented publicly prior to the com-

pilation of this thesis [39, 40].
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Contributions

This thesis presents different strategies to empower novice users and help them achieve

professional-level photo editing skill via interaction modalities which are simple to under-

stand and easy to master. Here we explicitly state the contributions according to chapter

order:

Chapter 1: Introduction

• Defining three directions that can lead to better photo editing tools for novices.

Chapter 2: Texture-aware Selection Masks

• A new neural network architecture and training regime for image patch embedding.

• Single-click and texture-aware selection of image regions.

• Texture-aware super-pixel creation algorithm.

Chapter 3: Detection And Removal Of Distracting Photo Elements

• Defining a new task called distractor prediction.

• Collecting a large-scale database with annotations of distractors.

• Training a prediction model that can produce distractor maps for arbitrary images.

• Using our prediction model to automatically remove distractors from images.

Chapter 4: Content-specific Photo Editing

• The ability to edit perceived camera distance in portraits.

• A robust head fitting method that estimates camera distance.

• A new image warping approach that approximates changes in head or camera pose.

• A method to create stereo pairs from an input portrait.

4



• Evaluation of our approach using an existing dataset and a new dataset captured for

this purpose.

As a whole, the goal of this work is to empower novice photo editors and allow people

from all skill levels to make the most of their photos. We hope to inspire further exploration

into the democratization of sophisticated photo editing techniques.
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Chapter 2

Texture-aware Selection Masks

“For me the future of the image is going to be in electronic form. You will see perfectly beautiful images on

an electronic screen. And I’d say that would be very handsome. They would be almost as close as the best

reproductions.”

— Ansel Adams, Dialogue with Photography (1979)

Texture representation is a central theme in the analysis and synthesis of images. It is

quite simple to segment an image made of piece-wise constant colors. It is much more

challenging to do so when the image consists of textured regions. Likewise, it is easy to

(a) (b) (c) (d)

Figure 2.1: (a) The input image. (b) A 2D embedding of patches in the image using Tex-
ture2Vec. Observe how patches with similar texture are clustered together. (c) Projecting
the texture code to 3D for visaulization purposes. (d) Single Click Segmentation. Given a
single click (the white circle on the fence) we automatically segment the entire fence.

6



fill a region with a constant color. It is much more challenging to fill a region with a given

texture.

Texture can be represented in a number of different ways. Early attempts represent

texture as a response to a filter bank. Similar texture should have similar response. Alter-

natively, texture can be represented as a histogram or a Gaussian mixture model. Today it

is common to represent texture as patches of raw pixel values. Analyzing or synthesizing

texture amounts to working in patch space. This non-parametric representation leads to

impressive results in applications such as texture synthesis or image denoising.

The goal of the different representations is to map texture to some vector space where

it is easy to compute distances between textures. The distance measure between similar

textures should hopefully be small to capture our perception of texture similarity. The rep-

resentation in the cases mentioned above is fixed ahead of time, regardless of the data.

Therefore it is difficult to ensure that the distance measure indeed captures texture similar-

ity.

We are inspired by the work on Word2Vec that maps words with similar meaning to

vectors with small distance between them. In our case, we wish to create an embedding

space where the Euclidean distance between patches of similar texture is small. We term

our approach Texture2Vec. However, there is a significant difference between words and

textures. Words have a fairly well defined dictionary. In texture, on the other hand, there is

no such dictionary and the number of different textures is not well defined. Moreover, with

texture we map never-seen-before texture to the vector space.

Consider Figure 2.1. The image on the left depicts a woman against a challenging

background. Yet, with a single click we are able to segment the background based on

distances between pixels in the embedding space (Figure 2.1(d)). This, we argue, is a

strong indication to the quality of the embedding. In addition, we show an embedding of

patches from the image to the 2D plane (Figure 2.1(b)). Observe how patches of similar

texture are clustered together, regardless of texture shifts and illumination changes. In
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Figure 2.1(c) we use PCA to project the embedding vectors on the three largest principal

components. The entire fence, that exhibits strong texture as well as shadows, is mapped

to a single pseudo-RGB gray color, yet another indication to the power of our method.

The Texture2Vec mapping is universal. The mapping is learned by analyzing the dis-

tribution of all natural patches in all the images of our training set. This is in contrast to

spectral methods, for example, that typically learn an image dependent embedding - chang-

ing an image will change the embedding. Another difference between spectral methods and

Texture2Vec is that spectral methods are unsupervised by nature. As a result, at their core

they still rely on some distance function between the raw pixel values of two patches. Tex-

ture2Vec, on the other hand, is defined in a supervised setting where the goal is to map pairs

of patches that are deemed similar by humans to the same code in embedding space. This

way the Euclidean distance in the embedding space reflects a perceptual similarity. Once

we learn a universal mapping we can use it to process multiple images simultaneously or

operate on images that change dynamically, say during editing.

We use Convolutional Neural Networks (CNN) to learn Texture2Vec. In particular, we

train a CNN on a large training set of labeled images with a triplet-loss objective function.

This objective function takes as input three patches. Two of them from the same texture

and another one from a different texture. During training, the CNN learns to map patches

of the same texture to nearby points in the Euclidean embedding space, while mapping the

patch of the other texture as far away as possible.

Once trained, patches are mapped to vector representation in a Euclidean space. Mea-

suring perceptual similarity between textures now amounts to measuring the Euclidean dis-

tance between their corresponding embedded vectors. We evaluate Texture2Vec on some

variants of a single-click image segmentation application. In this application, the user clicks

on a single pixel and the application automatically extracts the appropriate segment. We

then show that this basic functionality can be used in a multi-image single-click segmenta-
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tion, as well as a super-pixel application. These extensions indicate the potential power of

Texture2Vec.

2.1 Related Work

We deal with Texture, Representation Learning and Image Segmentation. The literature on

each of these topics is quite extensive. Here we highlight only research directly relevant to

our work.

Texture Textons are an early representation of texture [52]. They encode second order

statistics of small patches. This motivated extensive research on the use of filter banks

for texture classification. See review in [83]. Among the filters proposed are Gabor filters,

wavelets and Discrete Cosine Transform. These filters are fixed and are not learned from the

data. Filter response in pyramids was used with great success for texture synthesis [46, 15].

It was later reported that raw pixel values are as informative as filter bank response [100].

Patch based methods are used with great success in various applications such as texture

synthesis [34] and image denoising [20].

Interactive image segmentation also rely on texture analysis. For example, GrabCut

[86] represents the foreground and background regions of the image using a Gaussian

Mixture Model (GMM). Pixel label is based on its distance from each GMM. Similarly,

geodesic matting [11] computes geodesic distance on a probability image that is based on

the distance of each pixel to the GMM of the foreground or background.

Representation Learning Word2Vec [71] reignited the interest in semantic embedding

of words in vector spaces. It uses a Neural Network that was trained on a large dataset with

billions of words and millions of words in the vocabulary.

Learning similarity measures between image patches has been actively investigated in

the past. For example, Žbontar and LeCun [103] learn to do stereo matching by training a
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convolutional neural network to compare image patches. Observe that here the goal is to

learn a similarity measure of the same 3D world under slightly different viewing directions.

Simo-Serra et al. [90] learn feature point descriptors using a Siamese network, where

the output of their algorithm is 128D feature vector that can be used as a drop-in replace-

ment for any task involving SIFT. They are similar to us in that they too learn a universal

code for image patches. However, they focus on learning a code that is invariant to changes

in the viewpoint, whereas we wish to learn a code that is invariant to fluctuations within a

texture.

Moving beyond image patches, Schroff et al. [89] proposed a network that learns how

to embed face images. The network, termed FaceNet, learns a mapping from face images

to a compact Euclidean space where distances directly correspond to a measure of face

similarity. Standard techniques for recognition, clustering and verification can then be

used on the FaceNet feature vectors.

Recently, Ponjou Tasse and Dodgson [95] proposed a network that learns semantically

meaningful shape descriptors. These descriptors are embedded in a vector space of words

which leads to a cross-modal retrieval system.

All of the above are for specific types of images, for example faces or stereo pairs. We

were inspired by these works, and aim to create a system that works for arbitrary image

patches.

Image Segmentation We use the Berkley Segmentation Dataset (BSDS500) [69] to train

our CNN. We demonstrate its power on an interactive single-click image segmentation

application.

Interactive image segmentation has been investigated extensively in the past and two

prime examples are GrabCut [86] and Geodesic Matting [11]. Both these algorithms use

a Gaussian Mixture Model to model the distribution of RGB colors in the object and the

background. In addition, they require user input in the form of scribbles or a bounding box.
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In our application, on the other hand, we use our features and require just a single point

click from the user.

Single click interactive segmentation was also proposed by Bagon et al. [10] in the

context of “Segmentation by Composition”. They define an image segment as one that can

be easily composed from its own pieces, but difficult to compose from other pieces in the

image. They use this definition to extract a segment using a single user click.

2.2 Patch Embedding

Our goal is to embed image patches into a low-dimensional representation, such that l2

distances in the representation space correspond to some notion of patch similarity, with

a focus on textured patches. Specifically, we would like to learn a universal embedding

operator f(p) such that for two given patches p1 and p2, the distance ‖f(p1)− f(p2)‖2 is

small if p1 and p2 are similar textures, and large otherwise.

We use a large set of labeled images to learn the embedding in a supervised manner. A

key observation is that humans tend to “understand” textures, thus a segmentation dataset

is suitable as a guide for texture-aware patch embedding. We use a neural network to learn

the patch embedding space. It should be noted that we aim for the network to be applicable

to all natural image patches, and not be domain specific (e.g., face embedding [89]).

During training, we deem patches that were annotated as part of the same segment as

“positive pairs” and pairs from different segments as “negative pairs”. We use a triplet loss

for training: given an anchor patch pa which makes a positive pair with pp and a negative

pair with pn, the loss for a single triplet is defined as:

L(pa, pp, pn) = [‖pa − pp‖22 − ‖pa − pn‖
2
2 +m]+, (2.1)
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where m is a margin value (set empirically to 0.2) and [x]+ is defined as max{0, x}. The

triplet loss is a sum over all anchor-positive-negative triplets in the dataset D:

L =
∑

(pa,pp,pn)∈D

L(pa, pp, pn). (2.2)

Notice that while pa and pp are by definition from the same photo, the negative example

pn can be from either a different segment in the same photo or from a different photo

altogether. However, it is crucial to select pn from the same photo, thus producing a

triplet which is closer to the separation margin, as patches from the same photo are more

likely to be correlated. Moreover, selecting the entire triplet from the same photo pro-

duces a context-aware learning mechanism. In this way, we are effectively learning an

embedding that separates patches from different segments which co-occur in the same nat-

ural scene. This context-aware exemplar selection separates us from previous works. In

Schroff et al. [89], e.g., all face identities are incorporated in each training batch.

A careful triplet selection is crucial for good convergence. In each mini-batch, we prefer

using only “hard” examples for training. Specifically, for each anchor-positive pair (pa, pp)

we find the set N of all negative patches pn such that the loss falls within margin m:

N (pa, pp) = {pn | ‖pn − pa‖22 − ‖pp − pa‖
2
2 < m}. (2.3)

If multiple such patches exist, we select one at random.

For ground-truth labels, we use the Berkeley Segmentation Dataset (BSDS500) [7].

We randomly sample 50,000 32× 32 patches from each of the 200 images in the BSDS500

training set. If patches extend beyond image boundaries, we pad the original image, repeat-

ing the boundary pixel values.

We use a similar architecture to the one introduced in FaceNet [89] as implemented

by the OpenFace project [5], with changes to accommodate the difference in patch sizes.
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Appendix A.1 contains the neural network specification in Torch. More importantly, we

changed the training regime as explained above.

The network was trained on a (shared) Linux machine with an Intel Xeon Processor

E5-2699 v3 and a Tesla K40 GPU, for 700 epochs. Training took approximately 50 hours.

2.3 Evaluation

We evaluate Texture2Vec on images that were not part of the training set and report both

qualitative and quantitative results. Later on we use Texture2Vec for single-click image

segmentation. We believe that this application is a good test bed to evaluate the quality of

the embedding because it addresses a real-world problem while using the minimal amount

of user input possible, namely a single point click. This puts a heavy burden on the rep-

resentation, which is precisely our goal. Then we show a couple of possible extensions to

highlight the potential power of Texture2Vec.

A simple way to visualize the embedding is to project the 128D texture codes on the

leading three principal components. Ideally, regions with the same texture will be mapped

to the same pseudo-RGB color. Figure 2.2 demonstrates that on a wide variety of images. In

particular, observe how Texture2Vec maps various textures to uniform pseudo-RGB colors.

2.3.1 Quantitative Evaluation

The first experiment we report measures how good is the embedding in determining

whether a pair of patches come from the same object or not. For each test image we sample

100,000 positive pixel pairs (belonging to the same segment) and 100,000 negative pixel

pairs (belonging to different segments). For each pair (p1, p2) we measure the distance d

between the two patch embeddings

d(p1, p2) = ‖f(p1)− f(p2)‖2. (2.4)
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Figure 2.2: Visualizing Texture2Vec. We project the 128D embedding vectors on a 3D
space and visualize it as pseudo RGB colors. Observe how, for example, the shirt of the
person at the top row on the right is mapped to a nearly constant color. We are also able to
assign different pseudo colors to the building and its reflection (top row) even though they
are very similar in appearance.
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Method Mean AUC

Random 0.50
Gabor 0.66
Raw pixels 0.69
Mean color 0.70
Our method (validation) 0.75
Our method (testing) 0.76
Our method (training) 0.78
Human 0.86

Table 2.1: Same-Not-Same Evaluation: We measure how well we can predict if a pair of
patches comes from the same segment or not. The evaluation is made by calculating the dis-
tance between the embedding representation of both patches. A number of representations
is evaluated. (Higher is better). Our method outperforms the others by a large margin.

where f(p) is our patch embedding operator. Given a threshold t we can define a binary

classifier C(p1, p2) that determines whether the patches belong to the same segment or not:

C(p1, p2) =

 same if d(p1, p2) < t

different if d(p1, p2) ≥ t
. (2.5)

We use the common receiver operating characteristic curve for all t values and calculate

the area under the curve (AUC). Higher AUC implies a better classifier. We apply the above

procedure on the training, validation and test sets of the BSDS500 dataset [7]. Note that

only the training set was used in Section 2.2 to create our embedding.

Instead of using our patch embedding operator f(p) we can define other operators and

repeat the above procedure. In particular, we consider:

• Raw pixels: use the RGB values of a given patch.

• Mean color: use the average patch color.

• Gabor: use the response of a filter bank consisting of multiple Gabor filters at differ-

ent orientations and scales.

15



Table 2.1 summarizes all AUC scores. Reasonable values should range between a ran-

dom selection (0.50) and human performance (0.86), which is calculated by predicting one

annotator using another (BSDS500 contains several annotations per image). Our method

scores 0.76, compared to the next best method that scored only 0.70.

2.3.2 Single-Click Segment Selection

We use single-click selection to demonstrate the strength of our embedding. Such a narrow

information channel between the user and the algorithm is best suited to investigate the

properties of Texture2Vec.

Given a photo I, we calculate patch embeddings f(p) for each 32× 32 image patch in

a preprocessing step. At runtime, the user clicks a single pixel location that corresponds to

patch pc. For all other patches, we calculate the embedding distance

dp := d(p, pc) = ‖f(p)− f(pc)‖2 ∀p ∈ I, (2.6)

which yields a per-pixel distance value. Next, we threshold the distances using Otsu’s

method [80] to produce a binary selection mask. As an optional step, the mask can be

refined using snakes [53] to better snap the selection to image edges.

If preprocessing runtime is a constraint, we compute an embedding for pixels inK-pixel

strides (horizontally and vertically), and interpolate for the rest of the pixels. This reduces

computation time by a factor of K2. All the results shown here use K = 5. Pre-processing

a 320x480 RGB image takes 40 seconds on standard hardware.

Figure 2.3 shows single-click selection results. Importantly, the click locations were

randomly selected and not hand picked. Examining Figure 2.3, we notice a few interesting

points. Notice how the mask distinguishes between “real” edges and intra-texture edges.

A single click on a textured shirt or a spotted animal is enough to select it all. Another

important property is that training on pixel-accurate masks allows a click near the segment
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Figure 2.3: Single-click selection results. The user clicks on a single pixel (white dot),
which in turn produces a selection mask. Notice how textured regions such as plaid clothing
or butterfly wings are selected as a single region. The user can fix errors (e.g. part of a
branch selected with the butterfly) with consecutive clicks.

boundary to produce a successful mask. Notice, e.g., the white statue on the third row. The

click is adjacent to a segment boundary, which in turn implies that the surrounding patch

includes elements from several segments. Despite that, we managed to learn that the center

pixel of the patch is a part of the statue segment.

We next want to verify that our method is robust to variations in click locations. Fig-

ure 2.4 shows some qualitative examples. Observe how different seed points lead to vi-

sually similar masks. To quantify the notion of mask stability, we propose the following

mask stability measure. Let M1, ...Mn be n masks, where mask Mi is a binary image that

equals 1 for segment pixels and 0 anywhere else. Let M = 1
n

∑n
i=1Mi be the average

17



Figure 2.4: Single-click selection stability. Randomly chosen click locations (white dots)
for each segment produce similar selection masks. We show results including edge snap-
ping (top) and without snapping (bottom). Notice how, e.g., click locations on the lizard
texture include dark and bright spots, yet the selection masks remain stable.

mask. Define:

IoUi =

∑
xM(x)Mi(x)∑

xM(x)
, (2.7)

where x is pixel coordinate. In words, IoUi sums the pixels inM that belong to the segment

according to mask Mi, normalized by the sum of all pixels in M . The final stability score

is:

stability =
1

n

n∑
i=1

IoUi (2.8)

If all masks are exactly the same, the score is 1.

Equipped with this stability measure, we conducted the following experiment. For

a given image and a non-trivial ground truth segment (larger than 5% of the size of the

image), we randomly sample n = 10 seed points within the segment and use each one

independently to construct a mask, giving us a total of 10 masks per segment. We then

computed stability per segment (Equation 2.8) and averaged over 866 image segments.

For comparison, we repeated this protocol with Diffusion Map embedding as well [37].

Specifically, for a given image, we compute a 128D embedding using Diffusion Maps and

then apply the protocol. Results are reported in Figure 2.5. The figure shows a histogram

of stability scores using both methods, as well as a typical example (top row) of an average

mask for one image. The mask stability score for the example shown in the figure is 0.65.
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Figure 2.5: Single-Click Selection Stability: (Top) A typical image (left) and its average
mask for a particular segment (right). The stability score for this segment is 0.65 (see
text for details). (Bottom) Histogram of mask stability scores on a data set of 866 image
segments using Texture2Vec and Diffusion Maps. The average stability score of masks
generated using our method is 0.54, which is higher than the 0.40 score obtained by Diffu-
sion Maps.

The average stability score, across the entire set, of Texture2Vec is 0.54, compared to 0.40

for the Diffusion Maps.

Figure 2.6 compares our single-click selection to several other masking methods. A

scribble based method [61] can produce plausible results, but requires several scribbles (this

holds for other scribble-based methods). Diffusion Maps does not produce good masks,

even when using the best possible time value t, measured by comparing to ground-truth

segmentation and finding the optimal operating point of the Receiver Operator Character-

istic (ROC) curve . GrabCut [86] also does not produce the expected result, even when

given a tight bounding box. Classic descriptors such as Gabor filter banks, which histori-
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cally were used to describe textures [49] cannot mask the full segment via a single click.

We use 8 orientations and 16 wavelengths to produce a 128D Gabor descriptor (same length

as our embedding).

2.3.3 Extensions

Single-Click Image Segmentation is a core algorithm that can be extended in a number of

ways.

The first extension is to multi-image single click segmentation. This scenario is appli-

cable in case we have multiple images, or a video, of some event and we want to segment

the same texture across multiple images. Given the seed pixel selected by the user, we

compute the distance, in embedding space, between the seed pixel and all the pixels in all

the images. We then proceed as in 2.3.2. Results are shown in Figure 2.7. The sequence

consists of 82 frames and the user clicks on just a single point in the first frame. The method

can handle occlusions and appearance changes without resorting to tracking or higher level

computer vision algorithms. This demonstrates the potential power of a universal texture

representation such as Texture2Vec.

The second extension is a super-pixel application. Super-pixels are an important mid-

level image representation that is often the first step in many image processing and com-

puter vision algorithms.

We compare Texture2Vec to two popular super-pixels methods. The first is SLIC [1],

that uses K-means clustering in x-y-l-a-b space to create the segmentation. SLIC is simple

to code and quite fast, however some important edges are occasionally missed, creating

super-pixels that span two or more image segments. The second is based on edge maps to

guide the algorithm [33]. Our algorithm is similar to [33] but replaces La*b* values with

the first three principle components of Texture2Vec.

Figure 2.8 shows a comparison between the methods. Both Dollár et al. [33] and our

method adhere to edges better than SLIC. Our approach is the only one that can distinguish
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Input (a) GrabCut

(b) Gabor (c) Diffusion
(best t)

(d) Spectral (e) Spectral
(unsupervised) (light supervision)

(f) Spectral (g) Ours
(supervised)

Figure 2.6: Masking algorithm comparison. (a) GrabCut [86] does not correctly separate
the person. (b) Replacing our patch embedding with a Gabor filter bank response produces
a partial segment. (c) Diffusion maps [37] using the best possible time value t. (d) Unsu-
pervised spectral matting [61] does not accurately separate the texture from the rest of the
image, and lacks user-based control. (e) Two scribbles cannot correct the mask. (f) Fully
supervised spectral matting produces an accurate result, but requires several scribbles. (g)
Our single-click result. The input for (a) is a bounding box (red rectangle), for (b) (c) and
(g) is a single pixel location (white circle), and for (e) and (f) is several scribbles.

21



Figure 2.7: Single-click multi-frame selection. Given an input video (showing frames
0, 33, 50, 81), the user clicks on a single seed point (white dot, top-right image). We
segment all images using distances to this single seed point. Notice how we can select
the object without explicit template matching, despite appearance changes and occlusions.
This demonstrates the universality property of our embedding.
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(a) (b1) (c1)

(b2) (c2)

Figure 2.8: Texture Aware Superpixels. We compare (a) SLIC [1], (b1) a SLIC variant
guided by edge detection [33] and (c1) our method. Both (b1) and (c1) follow meaningful
edges better than vanilla SLIC (see, e.g., zoomed regions). However, our method does not
follow intra-texture edges, as can be seen when plotting the average super-pixel color in
(b2) and (c2) — we get much smoother colors in the fur region. See text for more details.

between inter-segment edges, that separate the target object from the background, and intra-

segment edges (e.g. the notable edges on the textured fur). Each super pixel in the figure

is assigned the average RGB color of all its pixels. Ideally, we want all super pixels of a

texture to have similar properties (e.g. same color). This way it will be easier for higher

level algorithms, such as image segmentation, to cluster them together.

Figure 2.9 shows results of our super-pixel algorithm on the NYU Depth Dataset [74].

We chose a dataset with different image statistics from the one we trained on, to show that

our network did not overfit to a specific photo type.
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Figure 2.9: Super-pixel creation on the NYU Depth Dataset [74]. We produce useful super-
pixels, despite the fact that the dataset statistics are different from BSDS (on which we
trained).
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2.4 Discussion

Texture2Vec offers a universal embedding of texture patches. The embedding maps patches

with similar textures to nearby vectors in the embedded space. As a result, Euclidean dis-

tance in that space corresponds to the perceptual distance of humans. This is in contrast to

common methods that define distances between patches based on some low-level analysis

of the raw pixel values of the patches.

However, the implementation is still limited. We use a fairly small training set (the

BSDS500 data set). This affects the quality of the embedding because it is bounded by

the size and quality of the training set. Hopefully, working with more data, and with bet-

ter and richer data augmentation, can further improve the embedding. Another problem

that we currently face is that we use an image segmentation dataset to train our model.

As a result we treat image segments as having the same texture, which is not always the

case in practice. This can probably be addressed by collecting more data geared towards

Texture2Vec.

We believe that Texture2Vec opens the door to a wide variety of image editing appli-

cations. In particular, we demonstrate a number of possible use cases. The first is a single

click segmentation scenario. In this scenario, the user clicks a single point and the system

determines the image segment automatically, based on patch similarities in the embedded

space. We next presented a multi-image single click segmentation where a single click

in one image is propagated to other images automatically. This is made possible by the

universal property of the embedding that lets us measure distances between patches taken

from different images. Finally, we have used Texture2Vec representation for super pixel

generation, by replacing pixel RGB values with our embedding vectors.

In the future, we would like to develop tools that will let us reduce the dependency on

labeled training data, using possibly self-supervised or unsupervised techniques. We would

also like to explore ways to synthesize data that will help us refine and augment the training

set.
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Chapter 3

Detection And Removal Of Distracting

Photo Elements

“Photographers deal in things which are continually vanishing and when they have vanished there is no

contrivance on earth which can make them come back again.’

— Henri Cartier-Bresson, The Mind’s Eye: Writings on Photography and Photographers (1999)

Taking pictures is easy, but editing them is not. Professional photographers expend

great care and effort to compose aesthetically-pleasing, high-impact imagery. Image edit-

ing software like Adobe Photoshop empowers photographers to achieve this impact by

manipulating pictures with tremendous control and flexibility – allowing them to carefully

post-process good photos and turn them into great photos. However, for most casual pho-

tographers this effort is neither possible nor warranted. Last year Facebook reported that

people were uploading photos at an average rate of 4,000 images per second. The over-

whelming majority of these pictures are casual – they effectively chronicle a moment, but

without much work on the part of the photographer. Such cases may benefit from semi- or

fully-automatic enhancement methods.

Features like “Enhance” in Apple’s iPhoto or “Auto Tone” in Photoshop supply one-

click image enhancement, but they mainly manipulate global properties such as exposure
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and tone. Likewise, Instagram allows novices to quickly and easily apply eye-catching

filters to their images. Although they have some more localized effects like edge darkening,

they apply the same recipe to any image. However, local, image-specific enhancements

like removing distracting areas are not handled well by automatic methods. There are

many examples of such distractors – trash on the ground, the backs of tourists visiting

a monument, a car driven partially out of frame, etc. Removing distractors demands a

time-consuming editing session in which the user manually selects the target area and then

applies features like iPhoto’s “Retouch Tool” or Photoshop’s “Content Aware Fill” to swap

that area with pixels copied from elsewhere in the image.

In this work we take the first steps towards semi-automatic distractor removal from

images. The main challenge towards achieving this goal is to automatically identify what

types of image regions a person might want to remove, and to detect such regions in arbi-

trary images. To address this challenge we conduct several studies in which people mark

distracting regions in a large collection of images, and then we use this dataset to train a

model based on image features.

Our main contributions are: (1) defining a new task called “distractor prediction”, (2)

collecting a large-scale database with annotations of distractors, (3) training a prediction

model that can produce distractor maps for arbitrary images, and (4) using our prediction

model to automatically remove distractors from images.

In the following sections we describe related work (Section 3.1), describe and analyze

our datasets (Section 3.2), explain our distractor prediction model (Section 3.3), evaluate

our predictor (Section 3.4) and present applications of distractor prediction (Section 3.5).

With this publication we also make available an annotated dataset containing images with

distractors as well as code for both analyzing the dataset and computing distractor maps.
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Figure 3.1: User annotations. Top: 35 user annotations for one input image. Bottom, from
left to right: input image, average annotation, overlay of thresholded annotation with input
image. We collected 11244 such annotations for 1073 images.

3.1 Related Work

A primary characteristic of distractors is that they attract our visual attention, so they are

likely to be somewhat correlated with models of visual saliency. Computational saliency

methods can be roughly divided into two groups: human fixation detection [48, 42, 51] and

salient object detection [28, 27, 68, 66]. Most of these methods used ground-truth gaze data

collected in the first 3-5 seconds of viewing (a few get up to 10 seconds) [51]. Although

we found some correlation between distractor locations and these early-viewing gaze fixa-

tions, it was not high. Our hypothesis is that humans start looking at distractors after longer

periods of time, and perhaps only look directly at them when following different viewing
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instructions. Existing computational saliency methods are thus insufficient to define visual

distractors, because the main subject in a photo where people look first usually has a high

saliency value. Moreover, many of these methods (especially in the second category) in-

clude components that attenuate the saliency response away from the center of the image

or from the highest peaks - exactly in the places we found distractors to be most prevalent.

Another line of related work focuses on automatic image cropping [93, 67, 105]. While

cropping can often remove some visual distractors, it might also remove important content.

For instance, many methods just try to crop around the most salient object. Advanced

cropping methods [105] also attempt to optimize the layout of the image, which might

not be desired by the user and is not directly related to detecting distractors. Removing

distractors is also related to the visual aesthetics literature [54, 65, 72, 94] as distractors

can clutter the composition of an image, or disrupt its lines of symmetry. In particular,

aesthetics principles like simplicity [54] are related to our task. However, the computational

methods involved in measuring these properties don’t directly detect distractors and don’t

propose ways to remove them.

Image and video enhancement methods have been proposed to detect dirt spots,

sparkles [58], line scratches [50] and rain drops [35]. In addition, a plethora of popular

commercial tools have been developed for face retouching: These typically offer manual

tools for removing or attenuating blemishes, birth marks, wrinkles etc. There have been

also a few attempts to automate this process (e.g., [97]) that require face-specific tech-

niques. Another interesting work [92] focused on detecting and de-emphasizing distracting

texture regions that might be more salient than the main object. All of the above methods

are limited to a certain type of distractor or image content, but in this work we are interested

in a more general-purpose solution.
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Mechanical Turk Mobile App

Number of images 403 376
Annotations per image 27.8 on average 1
User initiated No Yes
Image source Previous datasets App users

Table 3.1: Dataset comparison.

3.2 Datasets

We created two datasets with complementary properties. The first consists of user anno-

tations gathered via Amazon Mechanical Turk. The second includes real-world use cases

gathered via a dedicated mobile app. The Mechanical Turk dataset is freely available, in-

cluding all annotations, but the second dataset is unavailable to the public due to the app’s

privacy policy. We use it for cross-database validation of our results (Section 3.4). Table

3.1 and the following subsections describe the two datasets.

3.2.1 Mechanical Turk Dataset (MTurk)

For this dataset we combined several previous datasets from the saliency literature [3, 51,

62] for a total of 1073 images. We created a Mechanical Turk task in which users were

shown 10 of these images at random and instructed as follows:

For each image consider what regions of the image are disturbing or distracting from

the main subject. Please mark the areas you might point out to a professional photo

editor to remove or tone-down to improve the image. Some images might not have

anything distracting so it is ok to skip them.

The users were given basic draw and erase tools for image annotation (Figure 3.2). We

collected initial data for the entire dataset (average of 7 annotations per image) and used it

to select images containing distractors by consensus: An image passed the consensus test

if more than half of the distractor annotations agree at one or more pixels in the image.
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403 images passed this test and were used in a second experiment. We collected a total of

11244 annotations, averaging 27.8 annotations per image in the consensus set (figure 3.1).

3.2.2 Mobile App Dataset (MApp)

Although the Mechanical Turk dataset is easy to collect, one might argue that it is biased:

Because Mechanical Turk workers do not have any particular expectations about image en-

hancement and cannot see the outcome of the intended distractor removal, their annotations

may be inconsistent with those of real users who wish to remove distractors from images.

In order to address this, we also created a second dataset with such images: We created

a free mobile app (Figure 3.2) that enables users to mark and remove unwanted areas in

images. The app uses a patch-based hole filling method [12] to produce a new image with

the marked area removed. The user can choose to discard the changes, save or share them.

Users can opt-in to share their images for limited research purposes, and over 25% of users

chose to do so.

Using this app, we collected over 5,000 images and over 44,000 fill actions (user strokes

that mark areas to remove from the image). We then picked only images that were exported,

shared or saved by the users to their camera roll (i.e.not discarded), under the assumption

that users only save or share images with which they are satisfied.

Users had a variety of reasons for using the app. Many users removed attribution or

other text to repurpose images from others found on the internet. Others were simply

experimenting with the app (e.g. removing large body parts to comical effect), or clearing

large regions of an image for the purpose of image composites and collages. We manually

coded the dataset to select only those images with distracting objects removed. Despite

their popularity, we also excluded face and skin retouching examples, as these require

special tools and our work focused on more general images. After this coding, we used the

376 images with distractors as our dataset for learning.
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Figure 3.2: Data collection interfaces. Left: MTurk interface with basic tools for marking
and removal. Right: Mobile app using inpainting with a variable brush size, zoom level
and undo/redos.

3.2.3 Data Analysis

Our datasets afford an opportunity to learn what are the common locations for distractors.

Figure 3.3 shows the average of all collected annotations. It is clear that distractors tend to

appear near the boundaries of the image, with some bias towards the left and right edges.

We use this observation later in Section 3.3.2.

We can also investigate which visual elements are the most common distractors. We

created a taxonomy for the following objects that appeared repeatedly as distractors in both

datasets: spot (dust or dirt on the lens or scene), highlight (saturated pixels from light

sources or reflections), face, head (back or side), person (body parts other than head or

face), wire (power or telephone), pole (telephone or fence), line (straight lines other than

wires or poles), can (soda or beer), car, crane, sign, text (portion, not a complete sign),

camera, drawing, reflection (e.g.in images taken through windows), trash (garbage, typ-

ically on the ground), trashcan, hole (e.g.in the ground or a wall).

Treating each annotated pixel as a score of 1, we thresholded the average annotation

value of each image in the MTurk dataset at the top 5% value, which corresponds to 0.18,

and segmented the results using connected components (Figure 3.1). For each connected

component we manually coded one or more tags from the list above. The tag object was

32



Figure 3.3: An average of all collected annotations. Distractors tend to appear near the
image boundary.

used for all objects which are not one of the other categories, whereas unknown was used to

indicate regions that do not correspond to discrete semantic objects. We also included three

optional modifiers for each tag: boundary (a region touching the image frame), partial

(usually an occluded object) and blurry. Figure 3.4 shows the histograms of distractor

types and modifiers. Notice that several distractor types are quite common. This insight

leads to a potential strategy for image distractor removal: training task-specific detectors for

the top distractor categories. In this work we chose several features based on the findings of

figure 3.4 (e.g.a text detector, a car detector, a person detector, an object proposal method).

An interesting direction for future work would be to implement other detectors, such as

electric wires and poles.

All distractor annotations for the MTurk dataset are freely available for future research

as part of our dataset.
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Figure 3.4: Distractor types. Left: histogram of distractor types described in Section 3.2.3.
Right: histogram of distractor properties, indicating whether the distractor is close to the
image boundary, occluded/cropped or blurry.
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3.3 Distractor Prediction

Given input images and user annotations, we can construct a model for learning distractor

maps. We first segment each image (section 3.3.1). Next we calculate features for each

segment (section 3.3.2). Lastly, we use LASSO [96] to train a mapping from segment

features to a distractor score — the average number of distractor annotations per pixel

(section 3.3.3). The various stages of our algorithm are shown in figure 3.5.

3.3.1 Segmentation

Per-pixel features can capture the properties of a single pixel or some neighborhood around

it, but they usually do not capture region characteristics for large regions. Thus, we first

segment the image and later use that segmentation to aggregate measurements across re-

gions. For the segmentation we use multi-scale combinatorial grouping (MCG) [6]. The

output of MCG is in the range of [0, 1] and we use a threshold value of 0.4 to create a hard

segmentation. This threshold maximizes the mean distractor score per segment over the en-

tire dataset. We found empirically that the maximum of this objective segments distracting

objects accurately in many images.

3.3.2 Features

Our datasets and annotations give us clues about the properties of distractors and how to

detect them. The distractors are, by definition, salient, but not all salient regions are dis-

tractors. Thus, previous features used for saliency prediction are good candidate features

for our predictor (but not sufficient). We also detect features that distinguish main subjects

from salient distractors that might be less important, such as objects near the image bound-

ary. Also, we found several types of common objects appeared frequently, and included

specific detectors for these objects.

We calculate per-pixel and per-region features. The 60 per-pixel features are:
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Figure 3.5: Various stages of our algorithm. Top left: original image. Top right: MCG
segmentation. 2nd row: examples of 6 of our 192 features. 3rd row left: our prediction, red
(top three), yellow (high score) to green (low score). 3rd row right: ground truth. Bottom
row: distractor removal results, with threshold values 1, 2, 3, 20 from left to right. The
3 distractors are gradually removed (3 left images), but when the threshold is too high,
artifacts start appearing (far right).
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• (3) Red, green and blue channels.

• (3) Red, green and blue probabilities (as in [51]).

• (5) Color triplet probabilities, for five median filter window sizes (as in [51]).

• (13) Steerable pyramids [91].

• (5) Detectors: cars [38], people [38], faces [101], text [75], horizon [78, 51].

• (2) Distance to the image center and to the closest image boundary.

• (7)∗ Saliency prediction methods [47, 48, 66, 68, 78].

• (2)∗ Object proposals [109]: all objects, top 20 objects. We sum the scores to create a single

map.

• (2) Object proposals [109]: all objects contained in the outer 25% of the image. We create 2

maps: one by summing all scores and another by picking the maximal value per pixel.

• (9) All features marked with ∗, attenuated by F = 1− G/max (G). G is a Gaussian the size

of the image with a standard deviation of 0.7 ∗
√
d1 ∗ d2 (d1 and d2 are the height and width

of the image) and centered at the image center.

• (9) All features marked with ∗, attenuated by F as defined above, but with the Gaussian

centered at the pixel with the maximal feature value.

All the per-pixel features are normalized to have zero mean and unit variance.

To use these per-pixel features as per-segment features, we aggregate them in various

ways: For each image segment, we calculate the mean, median and max for each of the 60

pixel features, resulting in 180 pixel-based features per segment.

Lastly, we add a few segment-specific features: area, major and minor axis lengths, ec-

centricity, orientation, convex area, filled area, Euler number, equivalent diameter, solidity,

extent and perimeter (all as defined by the Matlab function regionprops). All features

are concatenated, creating a vector with 192 values per image segment.
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3.3.3 Learning

For each image in our dataset we now have a segmentation and a feature vector per segment.

We also have user markings. Given all the markings for a specific image, we calculate the

average marking (over all users and all segment pixels) for each segment. The calculated

mean is the ground truth distractor score for the segment.

We use Least Absolute Selection and Shrinkage Operator (LASSO) [96] to learn a

mapping between segment features and a segment’s distractor score. All results in this

paper are using LASSO with 3-fold cross validation. Using LASSO allows us to learn the

importance of various features and perform feature selection (section 3.3.4).

Besides LASSO, we also tried linear and kernel SVM [36] and random forests with

bootstrap aggregating [17]. Kernel SVM and random forests failed to produce good re-

sults, possibly due to overfitting on our relatively small dataset. Linear SVM produced

results almost as good as LASSO, but we chose LASSO for its ability to rank features and

remove unnecessary features. Nonetheless, linear SVM is much faster and may be a viable

alternative when training time is critical.

3.3.4 Feature Ranking

Table 3.2 shows the highest scoring features for each of the datasets. We collect the feature

weights from all leave-one-out experiments using LASSO. Next we calculate the mean of

the absolute value of weights, providing a measure for feature importance. The table shows

the features with the largest mean value.

Using our feature ranking we can select a subset of the features, allowing a trade-off

between computation and accuracy. Using the label Fk to denote the set of k highest

scoring features when trained using all features, Table 3.4 shows results with only F5 and

F10 features. Although these results are less accurate than the full model, they can be

calculated much faster. (But note that feature sets Fk as defined above are not necessarily

the optimal set to use for training with k features.)
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MTurk MApp

Torralba saliency1† Torralba saliency2†

RGB Green3 Coxel saliency3

Torralba saliency2† RGB Probability (W=0)1

Itti saliency1† RGB Probability (W=2)3

RGB Blue probability3 Text detector1

RGB Probability (W=4)1 RGB Green probability1

RGB Probability (W=2)1 Boundary object proposals1

Object proposals3‡ Hou saliency3‡

RGB Probability (W=16)1 Hou saliency1†

Distance to boundary3 Steerable Pyramids2

1mean 2median 3max
†attenuated with an inverted Gaussian around image center
‡attenuated with an inverted Gaussian around maximal value

Table 3.2: Feature selection. For each dataset we list the features with the highest mean
feature weight across all experiments.

3.4 Evaluation

For evaluation, we plot a receiver operating characteristic (ROC) curve (true positive rate

vs. false positive rate) and calculate the area under the curve (AUC) of the plot. We use a

leave-one-out scheme, where all images but one are used for training and the one is used

for testing. We repeat the leave-one-out experiment for each of our images, calculating the

mean of all AUC values to produce a score.

Table 3.3 summarizes our results. A random baseline achieves a score of 0.5. We

achieve an average AUC of 0.81 for the MTurk dataset and 0.84 for the MApp dataset. The

LASSO algorithm allows us to learn which of the features are important (section 3.3.4) and

we also report results using subsets of our features (Table 3.4). As expected, these results

are not as good as the full model, but they are still useful when dealing with space or

time constraints (less features directly translate to less memory and less computation time).

We also report results for previous saliency methods as well as a simple adaptation to

these methods where we multiply the saliency maps by an inverted Gaussian (as described

in Sec. 3.3.2). This comparison is rather unfair since saliency methods try to predict all
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Method MTurk AUC MApp AUC

Random 0.50 0.50
Saliency IV‡ [78] 0.55 0.56
Saliency I [66] 0.57 0.53
Saliency I‡ [66] 0.58 0.59
Saliency II [68] 0.59 0.57
Saliency II‡ [68] 0.59 0.57
Saliency III‡ [47] 0.62 0.59
Saliency III [47] 0.65 0.69
Saliency I† [66] 0.67 0.65
Saliency II† [68] 0.68 0.68
Saliency III† [47] 0.70 0.75
Saliency IV† [78] 0.72 0.72
Saliency IV [78] 0.74 0.76
Our method 0.81 0.84
Average Human 0.89 -

†attenuated with an inverted Gaussian around image center
‡attenuated with an inverted Gaussian around maximal value

Table 3.3: AUC scores. We compare against saliency prediction methods as published, and
the same methods attenuated with an inverted Gaussian, as described in Section 3.3.2. Our
method outperforms all others. As an upper bound we report average human score, which
takes the average annotation as a predictor (per image, using a leave-one-out scheme). We
also compared against individual features from Table 3.2 (not shown): all scores were lower
than our method with a mean score of 0.59.

salient regions and not just distractors. However, the low scores for these methods show

that indeed distractor prediction requires a new model based on new features.

3.4.1 Inter-Dataset Validation

Using Mechanical Turk has the advantage of allowing us to get a lot of data quickly, but

might be biased away from real-world scenarios. We wanted to make sure that our images

and annotation procedure indeed match distractor removal “in the wild”. For that purpose

we also created dataset collected using our mobile app (MApp dataset), which contains

real world examples of images with distractors that were actually removed by users. We

performed inter-dataset tests: training on one dataset and testing on the other, the results
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Method Average # MTurk AUC
of used features

Ours (F-5 features) 3.40 0.72
Ours (F-10 features) 7.43 0.80
Ours (all features) 28.06 0.81

Table 3.4: AUC scores. Results using all 192 features and subsets F5 and F10 described in
Section 3.3.4. Column 2 is the mean (over all experiments) of the number of features that
were not zeroed out by the LASSO optimization. F10 produces a score similar to the full
model, while using 5% of the features.

Train Test # of features # of used AUC
Dataset Dataset features

MTurk MApp 192 37 0.86
MApp MTurk 192 25 0.78

Table 3.5: Inter-dataset AUC scores. We train on one dataset and test on the other, in order
to validate that our MTurk dataset is similar enough to the real-world use cases in MApp
to use for learning.

are summarized in table 3.5. We show good results for training on MTurk and testing on

MApp (0.86) and vice versa (0.78). The MApp dataset contains a single annotation per

image (vs. 27.8 on average for the MTurk one). We therefore believe that the value 0.78

can be improved as the MApp dataset grows.

3.5 Applications

We propose a few different applications of distractor prediction. The most obvious appli-

cation is automatic in-painting (Section 3.5.1), but the ability to identify distracting regions

of an image can also be applied to down-weight the importance of regions for image re-

targeting (Section 3.5.2). We also posit that image aesthetics and automatic cropping can

benefit from our method (Section 3.6).
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3.5.1 Distractor Removal

The goal of distractor removal is to attenuate the distracting qualities of an image, to im-

prove compositional clarity and focus on the main subject. For example, distracting regions

can simply be inpainted with surrounding contents. To illustrate this application we created

a simple interface with a single slider that allows the user to select a distractor threshold

(figure 3.6). All segments are sorted according to their score and the selected threshold

determines the number of segments being inpainted (figure 3.5). For a full demo of this

system please see our supplementary video. Some before and after examples are shown in

figure 3.7. We chose a rank order-based user interface as it is hard to find one threshold

Figure 3.6: User interface for distractor removal. The user selects the amount of distracting
segments they wish to remove. We refer the reader to the accompanying video for a more
lively demonstration.
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that would work well on all images, however we found that if distractors exist in an image

they will correspond to the first few segments with the highest score.

3.5.2 Image Retargeting

Image retargeting is the task of changing the dimensions of an image, to be used in a

new layout or on a different device. Many such methods have been developed in the past

years [9, 87]. In addition to the input image and the desired output size, many of them

can take an importance mask, which may be derived (based on image gradients, saliency

prediction and gaze data) or provided by the user.

We can thus use our distractor prediction model to enhance a retargeting technique such

as seam-carving [9]. For this application we view the distractor map as a complement to

a saliency map: Whereas saliency maps give information regarding areas we would like to

keep in the output image, a distractor map gives information regarding areas we would like

to remove from the output. We thus calculate the gradient magnitudes of the image (G) and

our distractor prediction map (D). Next, we invert the map (D′ = 1−D) and normalize for

zero mean and unit standard deviation (Ĝ, D̂′). Our final map is Ĝ+ αD̂′. We use α = 1.

Even this simple scheme produces good results in many cases. In figure 3.8, notice

how the top-right image does not contain the red distractor and the bottom-right image

does not contain the sign on the grass. (See figure 3.7 for the full distractor maps for these

images.) However, we believe that a model which combines saliency and distractor maps

will produce superior results. The creation of such a model is left for future work.

3.6 What’s Next For Distractor Prediction?

We have acquired a dataset of distracting elements in images, used it to train a learning

algorithm to predict such regions in novel images, and applied our predictor to a novel
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Figure 3.7: Examples of distractor removal results. Each quadruplet shows (from left to
right): (1) Original image. (2) Normalized average ground-truth annotation. (3) Order of
segments as predicted by our algorithm. (4) Distractor removal result. We urge the reader
to zoom in or to look at the full resolution images available as supplementary material. The
number of segments to remove was manually selected for each image. Segments are shown
on a green-to-yellow scale, green being a lower score. Segment selected for removal are
shown on an orange-to-red scale, red being a higher score. Notice how the red segments
correlate with the ground-truth annotation. Also notice that we manage to detect a variety
of distracting elements (a sign, a person, an abstract distractor in the corner, etc.)
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Figure 3.8: Image retargeting using seam carving [9]. From left to right: original image,
retargeted image using a standard cost function (gradient magnitude), retargeted image
using distractor cost function described in Section 3.5.2.

system that can in-paint distractors, removing them from an image with little or no user

input.

Although our system shows great promise, there is plenty of room for improvement.

Figure 3.9 illustrates several cases where our approach produces unsatisfactory results: The

first two cases on the left illustrate a failure of our learned model. We predict the patch on

the jeans of the main subject, and an entire person, even though they are critical parts of the

main subject or the composition. The third example shows a segmentation failure, where

only part of the arm at the lower right corner is removed. The last shows a removal-method

failure, in which the sign behind the right person is correctly detected as distracting, but
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Figure 3.9: Two model failures, a segmentation failure, and an in-painting failure (see
Section 3.6). Top row: original images. Bottom row: output images.

our patch-based hole filling method failed to remove it properly and instead duplicated the

person.

Each of these failures suggests directions for future work. The first two cases sug-

gest our model could be improved by using features related to image composition, a main

subject detector, or relations between different elements in the image. The segmentation

failure suggests focusing on improving the segmentation using the detected saliency. And

of course, other image manipulations beyond patch-based hole filling [12] could be used to

attenuate distractors like the last example: Since color saturation and contrast are key com-

ponents of distractors, we can also consider removing them via de-saturation, exposure and

contrast attenuation, blurring and various other methods. Implementing several removal

methods and learning a model to automatically select the best one for a given distractor is

an interesting direction for future work.

There are also additional applications of distractor prediction that we have not fully

explored. For example, in addition to retargeting and inpainting, automatic cropping [105]

could make use of distractor maps. However, since objects cut off at the edge of frame are

often highly distracting, one would have to take into account the change in prediction that

occurs as a result of the crop itself. One could also consider the use of distractor prediction

as a cue for computational image aesthetics methods.
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Chapter 4

Content-specific Photo Editing

“There are no bad pictures; that’s just how your face looks sometimes.”

— Unknown, (falsely attributed to Abraham Lincoln)

“I’ve never met a person I couldn’t call a beauty.”

— Andy Warhol, The Philosophy of Andy Warhol (1975)

In more than a century since the invention of the daguerreotype, photographers have

developed a set of conventions for effective composition of a photo. For example, the

combination of subject pose, camera angle, and lighting can help define a jawline. Even

the camera distance to the subject impacts perception; the literature shows that portraits

taken up close are associated with terms such as “peaceful” and “approachable”, whereas

headshots taken from further away are perceived as “attractive”, “smart” and “strong” [19,

81, 82].

This paper introduces a method that can subtly alter apparent camera distance and head

pose after a portrait has been taken (Figure 4.1). This system fits a virtual camera and a

parametric 3D head model to the photo, then models changes to the scene in the virtual

camera, and finally approximates those changes using a 2D warp in the image plane. Sim-

ilar frameworks have been used for a variety of applications including changing pose and
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(a) near: real photo (c) near: warped from (a) (e) anaglyph from (d)

(b) far: warped from (d) (d) far: real photo (f) rotated from (d)

Figure 4.1: Comparing real photos taken with a near (a) or far (d) camera, one can observe
the subtle effect of perspective on portrait photos. We simulate this effect by warping (d)
→ (c) to match the apparent distance of (a); and also (a) → (b) to match the distance of
(d). These warps are guided by an underlying 3D head model. This framework can also
generate stereo anaglyphs (e) and apparent head rotation (f).
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gender [14], face transfer [102], and expression transfer [108]. Our work specifically builds

on the FaceWarehouse approach of Chen et al. [24]. These prior methods all use a weak

perspective camera model, which is a reasonable approximation only when scene points

are all at a similar distance to the camera. In contrast, our approach uses a full perspective

camera model, which allows us to modify camera distance and handle scenes that come

very close to the camera. In a full perspective camera model, the distance and field of view

parameters are nearly interchangeable, which makes optimization challenging. Neverthe-

less, this model is necessary for several of the effects that we show, especially treatment of

“selfies.”

Today most photos are taken using mobile devices with fixed focal length. This trend

accounts for the sudden explosion of the “selfie” – 2013 word of the year in the Oxford

Dictionary – meaning a portrait taken of oneself, often with a smartphone. Selfies are

typically shot at arm’s length, leading to visible distortions similar to the fisheye effect but

with their own characteristics, most notably an enlarged nose. In some cases this selfie

effect may be desired, but professional portrait photographers often prefer to position the

camera several meters from the subject, using a telephoto lens to fill the frame with the

subject [99]. Figure 4.2 shows two photos of the same subject, revealing the effects of this

tradeoff [79]. Our framework allows one to simulate a distant camera when the original shot

was a selfie, and vice versa, in order to achieve various artistic goals – reducing distortion,

making a subject more approachable, or adapting a portrait such that it may be composited

into a group shot taken at a different distance.

We show that our framework can also create convincing stereo pairs from input por-

traits or videos, rendered as anaglyphs. The approach relies on the full perspective camera

available in our 3D model. Finally, our method is also capable of other applications shown

in previous work using a weak perspective model, such as simulating small rotations of the

subject’s head. Our main contributions are:

• The ability to edit perceived camera distance in portraits.

50



• A robust head fitting method that estimates camera distance.

• A new image warping approach that approximates changes in head or camera pose.

• A method to create stereo pairs from an input portrait.

• Evaluation of our approach using an existing dataset and a new dataset captured for

this purpose.

4.1 Related Work

Despite a large body of work on face modeling, 3D face shape estimation from a single

image is still considered challenging, especially when the subject is captured under uncon-

strained conditions (varying expressions, lighting, viewpoint, makeup, facial hair). High

quality face reconstruction methods often require the subject to be scanned under con-

trolled laboratory conditions with special equipment such as lighting rigs and laser scan-

ners [32, 104, 4, 16]. Kemelmacher and Seitz [56] showed it is possible to reconstruct a

face shape from a large Internet collection of a person’s photos using ideas from shape from

shading. These methods are not applicable in a single photo scenario.

In their seminal work, Blanz and Vetter [14] fit a 3D face morphable model to a single

input image, texture-map a face image onto a 3D mesh, and parametrically change its

pose and identity. Vlasic et al. [102] extended their work using a multilinear model to

handle expressions and visemes. FaceWarehouse [24] extended the model from the face

region to an entire head shape. Other single-image reconstruction methods include an

approach based on patch-based depth synthesis from a 3D dataset [44], photometric stereo

with a 3D template prior [55] and a 3D template corrected with a flow optimization [43].

Unlike morphable models, the latter do not allow changing the identity and expression of

the subject.

In order to edit 3D face properties in a photograph using any of the above methods, the

face has to be accurately segmented from the background, texture-mapped onto the face

mesh, and then projected back to the image after the mesh is edited. The background, the
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rest of the head, and the eyes and teeth must be adjusted – often manually – to fit the pose

change. This complex pipeline can result in an unrealistic appearance due to artifacts of

segmentation, color interpolation, and inpainting.

An alternative approach uses the 3D model to generate a 2D warp field induced from

a change in 3D, and apply this warp directly on the photograph [108, 106]. This approach

doesn’t support extreme edits, but it can be fully automated and often leads to more realistic

results. We adopt this approach, driving our warp field with a multilinear morphable model

with parametrized pose, identity, and expression.

Existing morphable model methods typically have two main drawbacks: First, the cam-

era distance is given as input (or assumed to be infinite) and remains fixed; and second,

there are no annotations near the top of the head, which we show poses a major problem

for fitting and altering the apparent camera distance. We extend a multilinear model to in-

corporate camera distance, and present an optimization algorithm for the more challenging

fitting problem that results. We also add a few annotations in some key locations and show

in Section 4.3 that these are critical for our application.

The methods of Cao et al. [23, 22] and Hassner et al. [45] estimate a perspective camera

model similar to our approach. Cao et al. drive a real-time animation with an input head

video, but their system uses multiple frames for accurate estimation of model parameters,

whereas our goal is to use a single input image. We tested some of their underlying as-

sumptions and found them inapplicable to the case of single-image input (Section 4.2.3).

Also, Cao et al. reduce the intrinsic matrix to a single parameter estimation (focal length),

fixing the principal point offset to zero. In order to support, for example, cropped images,

our model estimates this offset as well (2 extra parameters). Hassner et al. frontalize a face

given an input image. They estimate the intrinsic camera matrix given a fixed 3D template

model, since an accurate fit is not required for their task. In contrast, our method addresses

the harder problem of jointly estimating camera and model parameters. Nonetheless, some

features of the method proposed by Hassner et al. are complementary to ours, for exam-
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ple “borrowing” features from one side of the face to complete the other could be used to

augment our system, in the case where there are occlusions in the input.

The perceptual literature draws a direct connection between camera distance, lens focal

length, and the way we perceive people in photos: Portraits taken from up close are asso-

ciated with terms such as “peaceful” and “approachable”, while those taken from further

away are “attractive”, “smart” and “strong” [81, 19, 82]. Cooper et al. [31] further showed

that portraits taken using a 50-mm lens are most likely to be viewed from a distance from

which the percept will be undistorted.

The Caltech Multi-Distance Portraits Dataset [21] contains portraits of different sub-

jects taken from various distances. In their paper, the authors created a way to estimate the

camera distance from an input portrait photo. We use their dataset to evaluate our method.

No previous method suggests changing the apparent camera distance in a photo. As far

as we know, we present the first work to address the task of fixing portrait distortions due

to camera distance.

4.2 Our Method

To perform perspective-aware manipulation, first we formulate a parameterized 3D model

for a head and camera (Section 4.2.1), automatically detect fiducials in a photo (Sec-

tion 4.2.2), and fit the model to the observed fiducials (Section 4.2.3). Next, we can alter

the parameters of the model (e.g., move the camera or head pose, Section 4.2.4) and then

approximate the resulting 3D changes as a 2D warp to the input image (Section 4.2.5).

4.2.1 Tensor Model

Our head model builds on the dataset collected by Chen et al. [24]. This dataset contains

scans of 150 individual heads, each in 20 poses. Each head has 11,510 vertices in 3D

(34,530 DOF). Expressions are represented by a blendshape model using 47 shapes.
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c©Anton Orlov, used with permission.

Figure 4.2: Compare focal lengths. Left: close-up using 90mm wide angle lens with a
large format camera (29mm equivalent on 35mm film). Right: distant shot with 265mm
telephoto lens (84mm equiv.)

Let us denote the average of all heads in the dataset as A ∈ R34530×1. We calculate the

difference of each head from the average and arrange the data in a tensorZ ∈ R34530×150×47,

with dimensions corresponding to vertices, identities and expressions, respectively. We use

high order SVD (HOSVD) [98] to calculate a core tensor C ∈ R40×50×25. Here our ap-

proach differs from that of Chen et al. [24], who do not perform SVD on the vertex dimen-

sion. We find that our compact representation still produces good results. Given the core

tensor we use an identity vector β ∈ R1×50 and an expression vector γ ∈ R1×25, together

with the original vector expansion calculated by HOSVD v ∈ R34530×40 to generate a head

with a specific expression and identity F ′ via:

F ′ = (C ⊗1 v ⊗2 β ⊗3 γ) + A (4.1)
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Input Initialization Rotation & Identity &
Translation Expression

— iterations→

Full Camera 3D Landmarks Final Fit

Figure 4.3: Fitting procedure. Green dots are 2D fiducial points. Red dots are corre-
sponding points on 3D mesh (shown in blue). Purple dots in initialization image are three
manually annotated fiducials for top of head and ears. Images, from left to right: Input.
Initialization gives a rough fit, but with some misalignments (e.g. eyes). Solving rotation
and translation improves the silhouette fit (e.g. chin). Solving identity and expression fixes
the eye and mouth misalignment. Solving the full camera model improves, in this case, the
top of the head. After 3D landmark update the alignment is worse, but landmark locations
on the 3D mesh are more accurate. Repeating the process produces a good final fit.

Here ⊗i is the standard tensor-vector multiplication in the i-th dimension. Let us denote

F ′′ ∈ R4×11510 as the natural reshape of F ′ such that each row contains x, y, and z co-

ordinates respectively, with an added row of ones to create homogeneous coordinates. In

order to generate a head in a specific location and orientation, as seen by a camera, we

need to multiply the head vertices (which are in the model coordinate system) with trans-

lation T = [13| − t] ∈ R3×4, rotation R ∈ R3×3 and the upper-triangular intrinsic matrix
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K ∈ R3×3. Thus, our full model (omitting the perspective divide for simplicity) is:

F = K ·R · T · F ′′ (4.2)

We found that a general intrinsic matrix K with five parameters leads to bad shape estima-

tion. Instead we constrain the skew to be zero and the horizontal and vertical focal length

parameters to be the same – reasonable assumptions for unaltered photos from modern

cameras. This intrinsic matrix constrained to three DOFs significantly improves the fit.

We contrast this full perspective model with previous work that uses weak perspective

(e.g. [102, 108, 107, 24]) – essentially using orthographic projection, followed by non-

uniform scaling. With weak perspective camera distance is represented by scaling, so there

is no way to adjust distortions due to nearby cameras, e.g., as seen in selfies.

4.2.2 Fiducial Detection

The method of Saragih et al. [88] automatically detects 66 fiducial points on faces: chin

(17), eyebrows (10), nose stem (4), below nose (5), eyes (12), and lips (18). Unfortu-

nately, these locations (which are also common for other detectors) are not sufficient for

our purposes because they lack points above the eyebrows and on the ears. Since our sys-

tem manipulates perspective, such points are crucial to model the effects on apparent head

shape.

Rather than invent a new fiducial detector, which we leave for future work, we use an

existing detector [88], and manually annotate three extra points on top of the head and ears.

We chose a small number of points to facilitate quick annotation (less than five seconds).

4.2.3 Fitting

Given an input image and the 69 fiducial point locations (Section 4.2.2) we would like to fit

a head model to the image. Since all models in our dataset share the same vertex ordering,
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we know the location of the corresponding fiducial points on the 3D models. Armed with

Equation 4.1 and Equation 4.2 the task is now to find the best parameters β, γ,K,R, t (50

+ 25 + 3 + 3 + 3 = 84 in total) such that the Euclidean distance between the fiducial points

and the projection of the 3D landmarks is minimized.

Many fitting strategies are possible. We experimented with several and discuss them

before describing our proposed approach. A naı̈ve approach is to treat the problem as one

large non-linear least square optimization. However, we found this approach gets stuck

in local minima. Using coordinate descent, as described in Algorithm 1, obtained lower

global error. Other works [108, 106, 24] also used coordinate descent. However our opti-

mization problem is much harder due to the inherent non-linearity of the camera projection

model (Algorithm 1 Line 6), which introduces ambiguity between the camera distance, fo-

cal length and the expression and identity parameters. We also tried adapting this naı̈ve

approach by using even more fiducial points, and achieved sub-par results. Our experience

suggests that merely adding more points does not completely solve the problem.

We also experimented with the approach of Cao et al. [23, 22] for focal length estima-

tion. It assumes that the fitting error taken as a function of focal length is convex. We tested

this convexity assumption in the context of our global optimization, by repeating their ex-

periments using un-cropped images from the Caltech Multi-Distance Portraits (CMDP)

Dataset [21], and found that convexity does not hold when calculated using a single image.

Moreover, the global optimum of the focal length was off by an average of 35% and up to

89% from the EXIF value. In contrast, Cao et al. were able to obtain errors below 2% using

multiple frames.

The aforementioned experiments led to a more deliberate design of the initialization

and of the gradient descent order (e.g. adding Line 2 as a precursor to the optimization

loop). All the results shown in this paper use a total of 3 iterations. The following sections

explain the different subparts of the optimization. Figure 4.3 contains an overview of the

fitting procedure.
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Algorithm 1 Fit model to image
1: Initialize camera, identity and expression parameters (§4.2.3)
2: Solve rotation and translation (§4.2.3)
3: for i in 1..num iterations do
4: Solve identity (§4.2.3)
5: Solve expression (§4.2.3)
6: Solve camera (§4.2.3)
7: Update 3D landmark location (§4.2.3)
8: end for

Initialization

We extract the focal length fE from the EXIF data of the image as an initial guess. We

allow this value to change during optimization, to account for EXIF inaccuracies and the

uncertainty of the exact location of the focal plane. We also use the distance tc between

camera and subject if it is known (e.g. in the dataset of Burgos-Artizzu et al. [21]). We

initialize our camera parameters to be:

K0 =


fE 0 0

0 fE 0

0 0 1

 , t0 =

0

0

tc

 , rx = ry = rz = 0 (4.3)

Here, rx, ry and rz are the x, y and z rotation, respectively. If distance tc is unknown we use

a default value of 1m. Initializing β0 and γ0 to the average of all identity and expression

vectors in our dataset, respectively, we solve for initial parameters β, γ,K,R, t using an

interior-reflective Newton method [30], minimizing the Euclidean distance between 2D

fiducial points and the 2D projections of corresponding 3D landmarks. Specifically, let

L = {li} be the 2D fiducial locations (Section 4.2.2) and H = {hi} be the corresponding

3D head vertices projected to the image plane by Equation 4.2. Our objective is then:

min
β,γ,K,R,t

N∑
i=1

‖li − hi‖22 (4.4)
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where N is the number of fiducial points (69 throughout this paper).

Parameter Update

As introduced in Algorithm 1, we solve for rotation R and translation t once. Next hold-

ing these parameters fixed, we repeatedly solve for identity β, expression γ, and cam-

era parameters K,R, t. As with initialization (Section 4.2.3), these optimizations use the

interior-reflective Newton method to minimize Equation 4.4. We find it critical to solve

first for rotation and translation only: Solving first for expression or identity results in a

distorted face that overcompensates for bad pose. Solving first for the full camera matrix

occasionally results in erroneous focal length.

3D Landmark Update

Some landmark locations are expected to remain fixed on the 3D model, regardless of view

angle. For example, the corner of the eye should be the same vertex for any pose. How-

ever, other landmarks are pose-dependent. Specifically, the chin and the top of the head are

entangled with pose. Of course, the chin doesn’t actually change location; rather our fidu-

cial detector detects contour points along the chin, and these contours are view-dependent.

Thus, after initial calculation of a face shape and location, we need to recalculate the loca-

tion of these “soft” landmarks. This step needs to be reasonably efficient because it is iter-

ated many times in Algorithm 1. We follow an approach similar to that of Yang et al. [108],

with two modifications: First, we add the top of the head as a movable landmark. Second,

their work used a face model, rather than a full head model. Because the projected shape is

nearly convex, they described an approach that iteratively projects towards the convex hull

in 2D to find the contour. Since we have a full head (including protruding ears) our pro-

jected shape is far from convex. We address this problem by a one time preprocessing step

in which we find a restricted set of “valid” chin and head points (omitting ears and neck,

for example) and then restrict the landmark update to consider only these valid points.
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4.2.4 Changing Distance and Pose

Given a good fit between the input image and the head model, we can now manipulate

the model. We move the virtual camera towards or away from the subject by changing

the translation t. To rotate the head we adjust both translation t and rotation R, since

translation is applied before rotation. Rotation is achieved by translation in a diagonal

direction (relative to the line between camera and subject), followed by a rotation to place

the head back in the visible frustum. These modifications result in a new projected head

shape, which will guide the warp described next.

4.2.5 Warping

After manipulating distance or pose we now have two sets of points: First, the original 3D

face vertices that match the input image, and second, the manipulated vertices representing

a change of distance, pose, expression or any other 3D manipulation. Given these two

sets, we find a 2D image warp to produce the output image. However, some points are

“occluded” for the purpose of the warp. For example, our head model includes back-

facing areas, but such areas move in the direction opposite from the front-facing areas when

changing camera distance. Therefore we remove occluded vertices before calculating the

warp.

Given a sparse set of before and after points, we need to extrapolate the vector field to

the entire image. We use triangulation-based cubic interpolation to get an initial estimate

of the dense vector field. Although correct in 3D, strong discontinuities in the vector field

may cause artifacts in the output. Consider, for example, an extreme rotation of the head.

Cheek points that had the same x and y values (but different z values) need to be stretched

to different x locations, causing a shear. Note that the vector field in this case is correct

in 3D, but cannot be approximated well by a 2D warp. Therefore, we smooth out large

gradients in the warp field, as follows: We first replace all values outside the face region

with a smooth interpolation of the valid values, by computing the discrete Laplacian and
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solving a Neumann boundary condition. We next blur the vector field by convolving with

a disk with radius 1
20

of the photo diagonal. Finally with the smooth warp field we use

reverse mapping to calculate the origin of each pixel in the output image. We use linear

interpolation since it is simple, fast, and produces satisfactory results. Figure 4.4 shows a

breakdown of these steps.

4.3 Evaluation

In this section we evaluate our method. Section 4.3.1 demonstrates the importance of

different parts of the pipeline by showing results with various stages disabled. Sec-

tion 4.3.2 and Section 4.3.3 compare our results against ground truth photos of synthetic

and real heads, respectively, taken at known distances. Section 4.3.4 discusses the impact

of our warp on the background of the portrait.

4.3.1 Pipeline Evaluation

For a face with neutral expression and common proportions, a single average head model

might suffice (Section 4.3.3). However, when the input image is expressive, it is important

to use the full face model. Figure 4.5 shows results using an average face model, instead of

optimizing a specific identity and expression to our image. Clearly a single face cannot be

a catch-all solution, resulting in artifacts due to bad alignment.

Fiducial point based matching from a 3D head to a 2D image is sensitive to the choice of

landmarks. Many existing works use 66 standard points spread across the chin, eyebrows,

nose, eyes and lips [108, 106, 24]. This choice is motivated mostly by ease of recognition.

When fitting a face model and manipulating only the face internals, such landmarks might

suffice. However, we found that full head manipulation, especially one where the camera

location is changed, requires more fiducial points. Adding three points (top-of-head and
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ears) leads to significantly better results for our scenario. Figure 4.6 shows failure cases

when these additional landmarks are not used.

Our warping procedure (Section 4.2.5) uses well established methods (such as trian-

gulation and sampling). However, we use a specific procedure with added steps to reduce

potential artifacts. Figure 4.7 compares our warping results to results obtained by standard

image warping techniques.

4.3.2 Synthetic Heads

Numerically evaluating our method is hard. Photos of real people taken from different

distances at different times have slight variations in illumination, expression and pose, thus

the “ground truth” image does not match exactly a warped version of the input. To tackle

this issue we perform evaluation on two types of data: mannequin heads and real people.

The mannequin heads provide a controlled environment, for which we can get accurate

ground truth.

Figure 4.8 shows several results with mannequin heads. Our input image is taken from

a distance of 90cm. We warp it to simulate a range of distances between 120cm and 480cm.

We compare each warped result to the ground truth by calculating the absolute difference of

the gray-scale pixel values (black indicates equality; white indicates the largest difference.)

Note that the method manages to simulate both the head shape and the location of internal

features such as eyes and ears.

4.3.3 Real Heads

To obtain a similar evaluation of real-world cases, we use the CMDP dataset [21], which

contains portraits of people captured from a few controlled distances. We evaluate the

process of changing the camera distance from an image shot at 60cm to 480cm and then

compare to a real image captured at that distance. This is the harder direction of manipula-

tion, as features in the close-up image (e.g. ears) are not always visible.
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However, a naı̈ve pixel difference will not suffice here, due to slight pose, expression

and illumination changes in the ground truth images. Therefore to compare two images

we:

1. Register the images using a rigid transform, to avoid penalizing simple rotations or

translations.

2. Use Large Displacement Optical Flow [18] to calculate optical flow between the

images.

3. Mask out the background regions, since we are only interested in the head warp.

4. Calculate the median optical flow magnitude in the head region. To normalize, we

multiply by 100 / image diagonal.

Figure 4.9 numerically compares our method to the following four alternatives: 1) Com-

pute an optimal radial distortion correction given known ground truth (giving maximal ad-

vantage to this method to test its potential); 2) Use only the fiducials and the vertices of

the face to drive the warp, simulating the fitting done by methods like [108, 24] and many

others; 3) Fit an average head instead of the multi-linear deformable model and warp using

our method, representing methods like [55, 57, 45] that use a single model; We use a mean

full head model, averaged from the dataset in [24] as apposed to just a face model as was

done in previous methods, to explore a full potential of this approach for our task. 4) Fit

our full model. Figure 4.10 shows representative results.

Figure 4.5 and Figure 4.13 show our results for input images with a non-neutral pose

and expression. We compare against a static model, showing that a deformable model is

important.

4.3.4 Background Preservation

Most of the examples shown so far had a rather uniform background that might hide warp

artifacts if they exist. While some works in the area are limited to these types of inputs, we
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would like to have a system that works in the wild. Moreover, we cannot expect the user to

mask the area around the head, since we aim for a fully automatic method.

Thus, we require minimal distortion in the background, which we achieve by using a

2D warping approach (Section 4.2.5) rather than a 3D texture mapping approach requiring

perfect head segmentation. In Figure 4.12 we show several examples of our warp result on

noisy backgrounds.

4.3.5 Runtime

Our method is implemented in Matlab, and can be further optimized. Typical runtime is

around 5 seconds to fit the model to the input image, and less than 1 second for warp

field generation and warp calculation. To support real-time interactivity, we also created

a WebGL viewer that can adjust warps on the fly (Section 4.4.3). We pre-calculate warp

fields for a few predefined distances or other parameters such as pitch and yaw. The pre-

calculation takes 3 seconds for 4 samples of the distance parameter. After pre-computing

these warp fields, the interpolated warp is rendered in the web browser in real time (more

than 60 FPS).

4.4 Applications

Our primary application is to adjust camera distances (Section 4.4.1). We also discuss

other applications including stereoscopic portraits (Section 4.4.2) and pose adjustment

(Section 4.4.3).

4.4.1 Distance Correction

Our main motivating application is to adjust camera distance in portraits. Figure 4.11 shows

distance manipulation results for seven subjects from the CMDP dataset. In each case the

60cm portrait was warped to match the 480cm one, and vice versa, so they can be compared
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to ground truth. Note that the changes are subtle but noticeable. Moreover, these changes

are more prominent when the subject is known (yourself, family or a friend). We refer

the reader to the accompanying video as well as the interactive viewer in the supplemental

materials for more examples.

All the above results are from a controlled dataset, for comparison to ground truth.

However, our system also works well on images “in the wild.” Figure 4.12 shows dis-

tance manipulation on real images tagged as #selfie on Twitter and Flickr. Our system

works across a variety of expressions and poses despite cluttered backgrounds and com-

plex lighting. Figure 4.13 and Figure 4.5 further illustrate the robustness of our method to

exaggerated expressions and poses. More examples are in the supplementary materials.

4.4.2 Headshot Stereoscopy

We can create stereoscopic images using our framework. Given the distance from the

subject and the average human interpupillary distance, we can modify the viewpoint to

obtain two new images — one for each eye. Those images can then be displayed on devices

such as VR headsets. Figure 4.14 shows 3D anaglyphs automatically created from 2D

photos using this approach. These can be viewed using a standard pair of red/cyan glasses

(red eye left).

4.4.3 Other Applications

Our 3D fitting pipeline is based on the multi-linear morphable model framework. As such,

we can replicate some of the face manipulation tasks shown in previous work using similar

models [102, 108, 24]. These include pose and expression manipulation, and animating a

moving face from a still image (see Figure 1f and the accompanying video).

Our WebGL based user interface supports interactive photo manipulation. The user is

presented with the image and sliders to manipulate camera distance and head pose (Fig-

ure 4.15). We calculate warp fields for predefined parameter values (4 distances, 5 pitch
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values, 5 yaw values). When the user selects a specific parameter combination, we use

trilinear interpolation to generate a warp field. Then, we use the warp field to create the

output via reverse mapping. Output images are rendered at real-time rates, allowing users

to adjust parameters to their liking.

4.5 Limitations and Future Work

We present a unified framework for altering the camera and subject pose in a portrait photo.

This method can be used to improve selfies, make a subject look more approachable or

adapt the camera distance to match a different shot for compositing. We display results for

various scenarios and compare with ground truth data. Our editing operations remain in

the realm of “plausible” – they do not create new people, rather they show the same people

under different viewing conditions. In that sense, they are the post-processing equivalent of

a portrait photographer making a different decision about the composition. Our framework

also supports creating stereoscopic views from portraits and video, as well as making video

with apparent camera and subject motion from a still portrait. More results, video and

demos may be seen on our project page http://faces.cs.princeton.edu/.

Our approach has several weaknesses that suggest opportunities for future work. First, the

pipeline relies on a good fit between input and model, and if the fit fails, the results will be dis-

torted. While our optimization has proved robust in many cases, occasional failures remain. Future

approaches might build on larger, more varied head shape datasets, or rely on 2.5D sensor data

emerging in new camera rigs. Second, we only warp the data that exists in the original image. This

produces convincing results in many cases, but will not handle significant disocclusions such as can

arise from significant head rotations. One way to address this might be by filling missing regions

via, e.g., texture synthesis with a strong face prior [45]. Third, the way we currently treat hair is

by a smooth extrapolation of the warp field outside of the head region. This is often insufficient,

and could be improved with a specialized hair model. Fourth, our method does not handle eye gaze

correction and extreme expression change which may be desired in some scenarios. One could

experiment with existing techniques for editing gaze [41] and expression [108]. Finally, while the
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accompanying video shows a couple speculative applications for video (stereoscopic video and a

“moving portrait”) a proper investigation of such applications remains for future work.
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(a) initial field (b) with Laplace operator

(c) smoothed (d) with image

Figure 4.4: Generating the dense warp field. (a) Initial dense field, with discontinuities
in background and around face. (b) Improved background via discrete Laplace operator.
(c) Smoothed using an averaging filter. (d) Overlay of the final warp field and input image.
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Input Fit (single) Fit (full) Output (single) Output (full)

Figure 4.5: Using a single head model vs. our full model that allows expression and identity
variation. Dot colors as in Figure 3. The single model yields a bad fit, especially near the
smile, thus resulting in an unnaturally narrow chin.

Input Fit (66 fids) Fit (69 fids) Output (66 fids) Output (69 fids)

Figure 4.6: Using the standard 66 fiducial points vs. adding 3 points for top-of-ear and
top-of-head. Dot colors as in Figure 3. Fitting to 66 points produces inaccurate alignment
near the ears and the top of the head, thus resulting in unnatural proportions and skew.

Figure 4.7: Warp comparison. L-to-R: PiecewiseLinearTransformation2D (Matlab), Local-
WeightedMeanTransformation2D (Matlab), our result without smoothing, our result. Input
image in Figure 4.13.
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Real (0.9m) Real (1.2m) Real (4.8m)

Real 0.9 v. 1.2 Our result (1.2m) Our result (4.8m)

Real 0.9 v. 4.8 Real 1.2 v. Ours 1.2 Real 4.8 v. Ours 4.8

Figure 4.8: Ground truth evaluation. We use a mannequin to make sure no pose or expres-
sion changes occur in the ground truth images. Our results closely match the ground truth,
both in overall head shape and the location of internal face features.
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Figure 4.9: Score comparison with the 45 images from CMDP dataset that have EXIF data.
We warp images taken from 60cm to appear like 480cm away, comparing to ground-truth
photos from that distance. Energies are shown for: (1) input images, (2) radial distortion,
(3) warping with a face only (4) warping using an average head, and (5) our full model.
Top: median values of our energy function, where lower is better (Section 4.3.3). Boxes are
25th to 75th percentile and red line is median of medians. Bottom: we rank each method
vs. all others, counting how often a method had each rank. Our method outperforms all
others.

71



←input ground truth→

radial face only mean head ours

Figure 4.10: Comparing methods. Top: input and ground truth at target distance. Middle
compares alternate approaches to ours: optimal radial distortion, fiducials on face only,
mean head model, and ours. Bottom: visualizing error from ground truth.
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Sf Gf
Figure 4.11: Fixing/generating selfies. Legend in upper-left corner shows arrangement
of each quadruplet. Input ground truth “near” photos were taken at 60cm, whereas “far”
photos were taken from 480cm (CMDP Dataset [21]). Synthetic images were warped from
near to far and vice versa, and are arranged and color matched for ease of comparison.
When evaluating, compare the head shape and the location of internal face features. These
results are selected from a larger set available in supplemental materials.
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Figure 4.12: In-the-wild selfie correction. We use Twitter and Flickr images tagged as
#selfie. Left: original, right: our result. Results shown for various head shapes. Back-
ground remains largely undistorted. c©Flickr users Justin Dolske, Tony Alter, Omer1r, and
Christine Warner Hawks.
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Figure 4.13: Manipulating distances for expressive faces. Each pair contains: original
(60cm, left image), our output (480cm, right image).
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Figure 4.14: 3D anaglyphs created from a single image. To view, wear red-cyan 3D glasses
and zoom the image to fill your screen.
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Figure 4.15: Interactive editing, in which sliders control the resulting warp field. (See video
and demo on the project page.)
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Chapter 5

Conclusion

Photos have become ubiquitous and a natural part of everyday life. Photography and image edit-

ing is not practiced in ivory towers, it is a form of self expression and is universally accessible in

the age of camera equipped smartphones. Thus our goal is timely: to democratize image editing

by empowering novice users to improve their photos with sophistication that matches that of pro-

fessionals, coupled with simple interfaces. In this thesis we identified three major directions of

research that can achieve the elusive goal of combining sophistication and simplicity.

We provide an example from each research direction, and yet there remain many more to ex-

plore. Single-click smart selection is a powerful mask selection paradigm, and the current al-

gorithm can be further improved to make it more robust for a broader range of imagery. Also,

runtime improvements that will make the algorithm real-time are required for real-world usage.

While single-click interaction is minimal, there are other novice friendly selection mechanisms. In

one extreme form, a user could use voice commands such as “select the yellow shirt” to perform a

zero-click, voice based selection.

In the realm of distractor removal there are many pending improvements. For example, we

would like to add personalization to the system, allowing the removal of distractors according to

the taste and aesthetics of a specific user. Removal of distracting photo elements was presented as

an example of algorithms with “high-level” goals. Many such algorithms were, are, and should

be further created. One only needs to look at online Photoshop tutorials for inspiration. Many

contain high-level goals such as “balance lighting perfectly when compositing elements”, “how to
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swap heads in Photoshop” or “design a highbrow horror-movie poster”. These tasks typically take

between a few minutes to an hour or more to complete, and almost all of them can, with effort, be

turned into goal-specific algorithm.

We presented heads as one example of an object class which is important enough to warrant

domain specific algorithms. More such classes exist, and tackling a narrower domain allows the

creation of more powerful tool. Specific algorithms should be created for people, furniture, vehicles,

landscapes, cityscapes, and for any other element which is common in photos, either as a physical

element (e.g. cats) or a meta-element (e.g. beach). As an example, clothes are a common element

in photos, thus incorporating domain-specific knowledge to model the range of possible wardrobe

items could allow for better segmentation, understanding and editing of clothes. Another example

is building facades, which have unique properties such as repeating patterns and large flat surfaces

that can be leveraged to create powerful algorithms [73]. Domain specific algorithms extend beyond

image editing, and can improve tasks which are unique to the domain. For example, better image

facade algorithms will improve automatic map annotation.

This thesis narrows the gap between professional and novice photo editors. We envision a future

where the two sets of tools almost converge, once the novice-centric tools are powerful enough to

achieve professional grade results, via a simpler and often faster interaction.
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Appendix A

Code Snippets

A.1 Torch Implementation

We present the full neural network specification used in Chapter 2. It closely resembles the Open-

Face [5] implementation of FaceNet [89], with a few size changes to accommodate our smaller

32x32 patches.

l o c a l n e t = nn . S e q u e n t i a l ( )

n e t : add ( nn . Spa t i a lConvolu t ionMM ( 3 , 64 , 7 , 7 , 2 , 2 , 3 , 3 ) )

n e t : add ( nn . S p a t i a l B a t c h N o r m a l i z a t i o n ( 6 4 ) )

n e t : add ( nn . ReLU ( ) )

n e t : add ( nn . S p a t i a l M a x P o o l i n g ( 3 , 3 , 1 , 1 , 1 , 1 ) )

n e t : add ( nn . Spat ia lCrossMapLRN ( 5 , 0 . 0 0 0 1 , 0 . 7 5 ) )

n e t : add ( nn . Spa t i a lConvolu t ionMM ( 6 4 , 64 , 1 , 1 ) )

n e t : add ( nn . S p a t i a l B a t c h N o r m a l i z a t i o n ( 6 4 ) )

n e t : add ( nn . ReLU ( ) )

n e t : add ( nn . Spa t i a lConvolu t ionMM ( 6 4 , 192 , 3 , 3 , 1 , 1 , 1 ) )

n e t : add ( nn . S p a t i a l B a t c h N o r m a l i z a t i o n ( 1 9 2 ) )

n e t : add ( nn . ReLU ( ) )

n e t : add ( nn . Spat ia lCrossMapLRN ( 5 , 0 . 0 0 0 1 , 0 . 7 5 ) )

n e t : add ( nn . S p a t i a l M a x P o o l i n g ( 3 , 3 , 1 , 1 , 1 , 1 ) )

n e t : add ( nn . I n c e p t i o n{

i n p u t S i z e = 192 ,

k e r n e l S i z e = {3 , 5} ,

k e r n e l S t r i d e = {1 , 1} ,

o u t p u t S i z e = {128 , 32} ,

r e d u c e S i z e = {96 , 16 , 32 , 64} ,

poo l = nn . S p a t i a l M a x P o o l i n g ( 3 , 3 , 1 , 1 , 1 , 1 ) ,

batchNorm = t r u e

})

n e t : add ( nn . I n c e p t i o n{

i n p u t S i z e = 256 ,

k e r n e l S i z e = {3 , 5} ,
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k e r n e l S t r i d e = {1 , 1} ,

o u t p u t S i z e = {128 , 64} ,

r e d u c e S i z e = {96 , 32 , 64 , 64} ,

poo l = nn . S p a t i a l L P P o o l i n g ( 2 5 6 , 2 , 3 , 3 , 1 , 1 ) ,

batchNorm = t r u e

})

n e t : add ( nn . I n c e p t i o n{

i n p u t S i z e = 320 ,

k e r n e l S i z e = {3 , 5} ,

k e r n e l S t r i d e = {2 , 2} ,

o u t p u t S i z e = {256 , 64} ,

r e d u c e S i z e = {128 , 32 , n i l , n i l } ,

poo l = nn . S p a t i a l M a x P o o l i n g ( 3 , 3 , 2 , 2 , 1 , 1 ) ,

batchNorm = t r u e

})

n e t : add ( nn . I n c e p t i o n{

i n p u t S i z e = 640 ,

k e r n e l S i z e = {3 , 5} ,

k e r n e l S t r i d e = {1 , 1} ,

o u t p u t S i z e = {192 , 64} ,

r e d u c e S i z e = {96 , 32 , 128 , 256} ,

poo l = nn . S p a t i a l L P P o o l i n g ( 6 4 0 , 2 , 3 , 3 , 1 , 1 ) ,

batchNorm = t r u e

})

n e t : add ( nn . I n c e p t i o n{

i n p u t S i z e = 640 ,

k e r n e l S i z e = {3 , 5} ,

k e r n e l S t r i d e = {2 , 2} ,

o u t p u t S i z e = {256 , 128} ,

r e d u c e S i z e = {160 , 64 , n i l , n i l } ,

poo l = nn . S p a t i a l M a x P o o l i n g ( 3 , 3 , 2 , 2 , 1 , 1 ) ,

batchNorm = t r u e

})

n e t : add ( nn . I n c e p t i o n{

i n p u t S i z e = 1024 ,

k e r n e l S i z e = {3} ,

k e r n e l S t r i d e = {1} ,

o u t p u t S i z e = {384} ,

r e d u c e S i z e = {96 , 96 , 256} ,

poo l = nn . S p a t i a l L P P o o l i n g ( 9 6 0 , 2 , 3 , 3 , 1 , 1 ) ,

batchNorm = t r u e

})

n e t : add ( nn . I n c e p t i o n{

i n p u t S i z e = 736 ,

k e r n e l S i z e = {3} ,

k e r n e l S t r i d e = {1} ,

o u t p u t S i z e = {384} ,

r e d u c e S i z e = {96 , 96 , 256} ,

poo l = nn . S p a t i a l M a x P o o l i n g ( 3 , 3 , 1 , 1 , 1 , 1 ) ,

batchNorm = t r u e

})

n e t : add ( nn . S p a t i a l A v e r a g e P o o l i n g ( 3 , 3 , 2 , 2 ) )

n e t : add ( nn . View ( 7 3 6 ) )

n e t : add ( nn . L i n e a r ( 7 3 6 , o p t . embSize ) )

n e t : add ( nn . Normal i ze ( 2 ) )
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[77] Joseph Nicéphore Niépce. View from the window at le gras. http://www.hrc.
utexas.edu/exhibitions/permanent/firstphotograph/, 1826. Accessed:
2017-03-20.

[78] Aude Oliva and A Torralba. Modeling the shape of the scene: A holistic representation of
the spatial envelope. International journal of computer vision, 42(3):145–175, 2001.

[79] Anton Orlov. Selecting a portrait lens with correct focal length.
Accessed 2016-01-15: http://petapixel.com/2016/01/04/
selecting-a-portrait-lens-with-correct-focal-length/, 2016.

[80] N. Otsu. A threshold selection method from gray-level histograms. IEEE Transactions on
Systems, Man, and Cybernetics, 9(1):62–66, Jan 1979.

[81] Pietro Perona. A new perspective on portraiture. Journal of Vision, 7:992–992, 2007.

[82] Pietro Perona. Far and yet close: Multiple viewpoints for the perfect portrait. Art & Percep-
tion, 1(1-2):105–120, 2013.

[83] T. Randen and J. H. Husoy. Filtering for texture classification: a comparative study. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 21(4):291–310, Apr 1999.

[84] Ramesh Raskar and Jack Tumblin. Computational photography: mastering new techniques
for lenses, lighting, and sensors. AK Peters, Ltd., 2009.

[85] Erik Reinhard, Wolfgang Heidrich, Paul Debevec, Sumanta Pattanaik, Greg Ward, and Karol
Myszkowski. High dynamic range imaging: acquisition, display, and image-based lighting.
Morgan Kaufmann, 2010.

[86] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. ”grabcut”: interactive foreground
extraction using iterated graph cuts. ACM Trans. Graph., 23(3):309–314, 2004.

[87] Michael Rubinstein, Diego Gutierrez, Olga Sorkine, and Ariel Shamir. A comparative study
of image retargeting. ACM Transactions on Graphics, 29(6):160:1–160:10, December 2010.

[88] Jason M Saragih, Simon Lucey, and Jeffrey Cohn. Face alignment through subspace con-
strained mean-shifts. In International Conference on Computer Vision (ICCV), September
2009.

[89] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recogni-
tion and clustering. In 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 815–823, June 2015.

[90] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. Moreno-Noguer. Discrimi-
native learning of deep convolutional feature point descriptors. In 2015 IEEE International
Conference on Computer Vision (ICCV), pages 118–126, Dec 2015.

87

http://www.hrc.utexas.edu/exhibitions/permanent/firstphotograph/
http://www.hrc.utexas.edu/exhibitions/permanent/firstphotograph/
http://petapixel.com/2016/01/04/selecting-a-portrait-lens-with-correct-focal-length/
http://petapixel.com/2016/01/04/selecting-a-portrait-lens-with-correct-focal-length/


[91] EP Simoncelli and WT Freeman. The Steerable Pyramid: A Flexible Architecture For Multi-
Scale Derivative Computation. IEEE International Conf. on Image Processing (ICIP), 1995.
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