PHOTO MANIPULATION, THE EASY WAY

OHAD FRIED

A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE
BY THE DEPARTMENT OF
COMPUTER SCIENCE

ADVISER: PROFESSOR ADAM FINKELSTEIN

JUNE 2017

(© Copyright by Ohad Fried, 2017.

All rights reserved.

Abstract

The typical smartphone user has many thousands of photos in their personal collection.
Photo acquisition is effortless, and the next challenge is in devising methods to easily edit
such large collections. Specifically, we need manipulation algorithms that are powerful
enough for experts, yet simple for novices to master.

We identified three key directions to empower novice users with expert-level editing
capabilities while maintaining an overall simplicity in the process. Those directions are
(1) better selection masks, (2) high-level goal-centric algorithms and (3) domain specific
algorithms. In this thesis we give examples from each category.

Given a photo, a novice user will typically either not edit it at all, or apply a sim-
ple global operation such as exposure correction. In contrast, a professional photo editor
might perform local edits, specifying a selection mask to limit the operation to specific
photo regions, or combining regions from several photos into a single composition. To
ease selection mask creation we present a new patch embedding technique that allows for
single-click selection masks.

Novices often think in terms of goals (e.g. improve lighting, de-clutter photo) and less
in technical terms such as color spaces and image layers. One example of a high-level
goal is the removal of distracting elements from photos. The task is motivated by the
way professional photographers operate. They carefully frame the scene and might move
objects around in order to stage the perfect photo. We define “photo distractors” as the
elements that, if removed, would improve the photo. Using a simple slider interaction we
allow users to automatically remove such distractors from photos.

It is at times useful to tailor solutions to specific photo types. As an example we show
that, specifically for human heads, simple controls can induce sophisticated edits. Given a
single portrait photo as input, we can change the pose of the head and the camera distance.
This allows users to correct the “selfie effect”, i.e. big noses and small ears or to transform

distant photos into selfies.

1l

We conclude by discussing how each of these directions can be further explored to

enable better image editing tools for novices.

v

Acknowledgements

I would like to thank my family and especially my wife for understanding and accepting the
weird hours and exhausting deadlines. I would like to thank Adam, my adviser, who is the
best adviser anyone could wish for. I will forever try to mimic your insightful comments
and relaxed attitude. I would like to thank my thesis committee for taking the time to
listen to me rambling about my research, and all my collaborators for helping me produce
such research. I would be nothing without you. Specifically, I would like to acknowledge
Daniel Cohen-Or and Shai Avidan for their invaluable contribution to Chapter |2, and Eli
Shechtman and Dan Goldman for their invaluable contribution to Chapters [3|and 4] Lastly,
I would like to thank all the amazing friends and colleagues in Princeton and especially in
the graphics group. You are a fantastic group of people and you played a big part in making
the past five years of my life a pleasurable adventure.

This research was funded partly by a Google PhD Fellowship and a generous gift from
Adobe.

vi

To N.F.

Contents

L__Introduction

2 Texture- I lection Mask

2.1 Rel ekl
2.2 PatchEmbedding|
2 Evaluationl
2.3.1 Quantitative Evaluation|.
[2.3.2 Single-Click Segment Selection|
[2.3.3 EXtensions| o
2.4 Discussion].o

[3.2.1 Mechanical Turk Dataset (MTurk)|

[3.2.2 Mobile App Dataset (MApp)|

[3.2.3 Data Analysis|.

Vil

11
13
13
16
20
25

[3.3.1 Segmentation| 35
3.32 Features|. 35
[3.3.3 Learning| 38
[3.3.4 Feature Ranking| 38

34 Evaluationl L 39
3.4.1 Inter-Dataset Validation|, 40

[3.5 Applications|. 41
I Distractor Removalf o oL 42

[3.5.2 Image Retargeting| 43

3.6 What’s Next For Distractor Prediction?f. 43
@ Content-specific Photo Editing] 48
4.1 Related Workl 51
42 OurMethod 53
42.1 TensorModell 53
4.2.2 Hducial Detectionlo 56
2.3 Fitting 56
4.2.4 Changing Distanceand Pose| 60
425 Warping|. e 60

4.3 Evaluation 61
4.3.1 Pipeline Evaluation| 61
4.3.2 SyntheticHeads|, 62
433 RealHeadsl 62
#4.3.4 Background Preservation|. 0000 63
43S Runtimel. 64

4.4 Applications|. 64
M.41 Distance Correctionl 64

4.4.2 Headshot Stereoscopy|

4.4.3 Other Applications|

A Code Snippets|

[A.1 Torch Implementation|

78

80
80

82

List of Tables

2.1 Patch embedding evaluation| 15
(3.1 Distractor prediction: dataset comparison| 30
[3.2 Dastractor prediction: feature selection|o 39
(3.3 Distractor prediction: results| 00 L. 40
[3.4 Distractor prediction: feature subsetresults| 41
[3.5 Distractor prediction: inter-datasetresults| 41

List of Figures

2.1 Texture2Vec overviewl.o 6
[2.2 Visualizing Texture2Vec| oL 14
[2.3 Single-click selectionresults| 000 17
2.4 Single-click stability examples| 00000 18
[2.5 Single-click selection stability|o o000 19
[2.6 Masking algorithm comparison| oo 21
[2.7 Single-click multi-frame selection| 22
[2.8 Texture aware superpixels|. 23
[2.9 Texture aware superpixels on NYU Depth Dataset| 24
3.1 User annotated distractors|. 28

2 Distractor llection interfaces| L. 32
[3.3 Average distractor annotation| L. 33
[3.4 Distractor types| e 34
[3.5 Algorithm stages for distractor removal| 36
3.6 Userinterface for distractorremovall 42
3.7 Distractor removal results| 0oL 44
[3.8 Distractor-aware image retargeting| 46
3.9 Distractor removal fallure modes| oo 47
.1 Overview of portrait manipulationresults| 49

X1

2 Eff fcameradistancel 54

4.3 Head fitting procedure| 55
4.4 Generating warp fields for portrait manipulation| 68
4.5 Comparison to a single-meshmodel, ... 69
.6 Fiducial point importance|.o 69
.7 Portrait warp comparison| oL oL oL oL 69
{4.8 Ground truth evaluation of portrait manipulation|. 70
4.9 Portrait manipulation numeric comparison| 71
{4.10 Portrait manipulation visual comparison|o 72
[4.11 Fixing/generating selfies|, 73
4.12 In-the-wild selfie correction|. 74
{4.13 Manipulating distances for expressive faces| 75
.14 3D anaglyphs from a single portrait photo| 76
.15 Interactive portraiteditinglo 77

Xii

Chapter 1

Introduction

“Consequently, in the chain of reactions accompanying the creative act, a link is missing. This gap which
represents the inability of the artist to express fully his intention, this difference between what he intended to

realize and did realize, is the personal ‘art coefficient’, contained in the work.”

— Marcel Duchamp, The Creative Act (1957)

The earliest known surviving photograph made in a camera, called View from the Win-
dow at Le Gras, was taken by Joseph Nicéphore Niépce in 1826 or 1827 [/7]. Niépce
created it by exposing a chemically coated pewter plate for over eight hours. It is not much
to look at. Over the intervening decades, photo quality has improved, while exposure time
decreased and cameras became portable. Photography was no longer just a technical won-
der, it was becoming an expressive tool and an art form, with its own lingo, techniques
and community. Numerous photography books teach the photographer what to do when
capturing the photo in order to improve the results [2} [13, 25, 29]. In the days of film
photography, post-processing of photos was much less common and the scene inscribed on
film was often the final product.

One of the first digital images was scanned by Russell Kirsch in 1957 at the National
Bureau of Standards. The first digital camera was created by Steven Sasson in 1975 while

working for Eastman Kodak [63]]. Today there are more than 5 billion cameras in the world,

most of which are camera phones. Moving from film to pixels opened up new possibilities
for digital manipulation of photos. Computational photography [64, [84] uses computa-
tion instead of (or alongside) traditional optics to create better photos or to produce photos
which are unattainable under real-world physical constraints. Computational photography
methods such as high dynamic range imaging [85], gigapixel mosaicing [39], light field
photography [76], coded apertures [60], image re-targeting [8]], recoloring [26] and image-
based rendering [/0] expand the expressive range of photos. With the prevalence of digital
cameras and as smartphones couple cameras with substantial local processing, computa-
tional techniques are playing an increasingly important role in photography.

The typical smartphone user has tens or even hundreds of thousands of photos in their
personal photo collection. Given all those photos, most people seldom give their photos a
second glance after acquiring them. We have reached a point where photo acquisition is
trivial, and the next challenge is in devising methods to easily edit large photo collections.
Specifically, we need manipulation algorithms which are powerful enough for experts, yet
simple for novices to master.

Given a photo, a novice user will typically either not edit it at all, or apply a simple
global operation such as exposure correction. Such corrections can either be fully automatic
(“auto-enhance” features are common in modern photo editing suites) or require the user to
move a slider or two. In contrast, a professional photo editor will also perform local edits,
specifying a selection mask to limit the operation to specific photo regions, or combining
regions from several photos into a single composition. If we want to push novices towards
sophisticated edits, the first step is to supply them with a simple selection mechanism. In
Chapter [2| we describe a new patch embedding technique which allows single-click mask
selection. The user clicks on a single pixel within a region they are interested in, and the
full region is automatically selected. The selection is texture-aware, meaning that even for
highly textured regions such as a plaid shirt, the user can click a single pixel on the shirt

and it will be selected, despite large differences in color values and shading.

Another strategy for empowering novices with sophisticated photo editing capabilities
is to fully automate high level goals. Automatic enhancement features in tools such as
Apple Photos or Google Photos are used due to the simplicity of a single-click operation.
However, they are mostly limited to the same global editing operations that fix exposure
and color, or add an interesting photo filter. We would like to keep the simple single-click
or single-slider interaction, but use it to achieve higher level goals. In Chapter [3] we give
one example of such a goal — removing distracting elements from photos. The task is
motivated by the way professional photographers operate. They usually carefully control
the scene, either by using a studio or by a deliberate selection of the photo’s backdrop,
viewing angle and frustum. In many cases a professional will move objects around in order
to stage the perfect scene for a photo. We define “photo distractors” as the elements that,
if removed, would improve the photo. Using a simple slider interaction we allow users to
automatically remove such distractors from photos.

In order to achieve both simplicity and sophistication of results, it is at times useful to
tailor solutions to a specific category of photos. For example, in Chapter 4 we show that
tailoring a solution for human heads (arguably one of the most important object classes)
allows for simple control over sophisticated edits. Given a single portrait photo as input,
we allow a user to change the pose of the head and the camera distance. This allows us to
correct the “selfie effect”, i.e. big noses and small ears or to transform distant photos into
selfies.

The bulk of the material in Chapters [3| and 4 were presented publicly prior to the com-

pilation of this thesis [39, 40].

Contributions

This thesis presents different strategies to empower novice users and help them achieve
professional-level photo editing skill via interaction modalities which are simple to under-
stand and easy to master. Here we explicitly state the contributions according to chapter

order:

Chapter 1: Introduction
e Defining three directions that can lead to better photo editing tools for novices.
Chapter 2: Texture-aware Selection Masks

e A new neural network architecture and training regime for image patch embedding.
e Single-click and texture-aware selection of image regions.

e Texture-aware super-pixel creation algorithm.
Chapter 3: Detection And Removal Of Distracting Photo Elements

e Defining a new task called distractor prediction.
e Collecting a large-scale database with annotations of distractors.
e Training a prediction model that can produce distractor maps for arbitrary images.

e Using our prediction model to automatically remove distractors from images.

Chapter 4: Content-specific Photo Editing

The ability to edit perceived camera distance in portraits.

A robust head fitting method that estimates camera distance.

A new image warping approach that approximates changes in head or camera pose.

A method to create stereo pairs from an input portrait.

e Evaluation of our approach using an existing dataset and a new dataset captured for

this purpose.

As a whole, the goal of this work is to empower novice photo editors and allow people
from all skill levels to make the most of their photos. We hope to inspire further exploration

into the democratization of sophisticated photo editing techniques.

Chapter 2

Texture-aware Selection Masks

“For me the future of the image is going to be in electronic form. You will see perfectly beautiful images on
an electronic screen. And I'd say that would be very handsome. They would be almost as close as the best

reproductions.”

— Ansel Adams, Dialogue with Photography (1979)

Texture representation is a central theme in the analysis and synthesis of images. It is
quite simple to segment an image made of piece-wise constant colors. It is much more

challenging to do so when the image consists of textured regions. Likewise, it is easy to

(b) (c) (d)

Figure 2.1: (a) The input image. (b) A 2D embedding of patches in the image using Tex-
ture2Vec. Observe how patches with similar texture are clustered together. (c) Projecting
the texture code to 3D for visaulization purposes. (d) Single Click Segmentation. Given a
single click (the white circle on the fence) we automatically segment the entire fence.

fill a region with a constant color. It is much more challenging to fill a region with a given
texture.

Texture can be represented in a number of different ways. Early attempts represent
texture as a response to a filter bank. Similar texture should have similar response. Alter-
natively, texture can be represented as a histogram or a Gaussian mixture model. Today it
is common to represent texture as patches of raw pixel values. Analyzing or synthesizing
texture amounts to working in patch space. This non-parametric representation leads to
impressive results in applications such as texture synthesis or image denoising.

The goal of the different representations is to map texture to some vector space where
it is easy to compute distances between textures. The distance measure between similar
textures should hopefully be small to capture our perception of texture similarity. The rep-
resentation in the cases mentioned above is fixed ahead of time, regardless of the data.
Therefore it is difficult to ensure that the distance measure indeed captures texture similar-
ity.

We are inspired by the work on Word2Vec that maps words with similar meaning to
vectors with small distance between them. In our case, we wish to create an embedding
space where the Euclidean distance between patches of similar texture is small. We term
our approach Texture2Vec. However, there is a significant difference between words and
textures. Words have a fairly well defined dictionary. In texture, on the other hand, there is
no such dictionary and the number of different textures is not well defined. Moreover, with
texture we map never-seen-before texture to the vector space.

Consider Figure 2.1] The image on the left depicts a woman against a challenging
background. Yet, with a single click we are able to segment the background based on
distances between pixels in the embedding space (Figure 2.1(d)). This, we argue, is a
strong indication to the quality of the embedding. In addition, we show an embedding of
patches from the image to the 2D plane (Figure [2.1(b)). Observe how patches of similar

texture are clustered together, regardless of texture shifts and illumination changes. In

Figure 2.1(c) we use PCA to project the embedding vectors on the three largest principal
components. The entire fence, that exhibits strong texture as well as shadows, is mapped
to a single pseudo-RGB gray color, yet another indication to the power of our method.

The Texture2Vec mapping is universal. The mapping is learned by analyzing the dis-
tribution of all natural patches in all the images of our training set. This is in contrast to
spectral methods, for example, that typically learn an image dependent embedding - chang-
ing an image will change the embedding. Another difference between spectral methods and
Texture2Vec is that spectral methods are unsupervised by nature. As a result, at their core
they still rely on some distance function between the raw pixel values of two patches. Tex-
ture2Vec, on the other hand, is defined in a supervised setting where the goal is to map pairs
of patches that are deemed similar by humans to the same code in embedding space. This
way the Euclidean distance in the embedding space reflects a perceptual similarity. Once
we learn a universal mapping we can use it to process multiple images simultaneously or
operate on images that change dynamically, say during editing.

We use Convolutional Neural Networks (CNN) to learn Texture2Vec. In particular, we
train a CNN on a large training set of labeled images with a triplet-loss objective function.
This objective function takes as input three patches. Two of them from the same texture
and another one from a different texture. During training, the CNN learns to map patches
of the same texture to nearby points in the Euclidean embedding space, while mapping the
patch of the other texture as far away as possible.

Once trained, patches are mapped to vector representation in a Euclidean space. Mea-
suring perceptual similarity between textures now amounts to measuring the Euclidean dis-
tance between their corresponding embedded vectors. We evaluate Texture2Vec on some
variants of a single-click image segmentation application. In this application, the user clicks
on a single pixel and the application automatically extracts the appropriate segment. We

then show that this basic functionality can be used in a multi-image single-click segmenta-

tion, as well as a super-pixel application. These extensions indicate the potential power of

Texture2Vec.

2.1 Related Work

We deal with Texture, Representation Learning and Image Segmentation. The literature on
each of these topics is quite extensive. Here we highlight only research directly relevant to

our work.

Texture Textons are an early representation of texture [52]. They encode second order
statistics of small patches. This motivated extensive research on the use of filter banks
for texture classification. See review in [83]]. Among the filters proposed are Gabor filters,
wavelets and Discrete Cosine Transform. These filters are fixed and are not learned from the
data. Filter response in pyramids was used with great success for texture synthesis [46), [15].
It was later reported that raw pixel values are as informative as filter bank response [[100].

Patch based methods are used with great success in various applications such as texture
synthesis [34] and image denoising [20].

Interactive image segmentation also rely on texture analysis. For example, GrabCut
[86]] represents the foreground and background regions of the image using a Gaussian
Mixture Model (GMM). Pixel label is based on its distance from each GMM. Similarly,
geodesic matting [[11] computes geodesic distance on a probability image that is based on

the distance of each pixel to the GMM of the foreground or background.

Representation Learning Word2Vec [71] reignited the interest in semantic embedding
of words in vector spaces. It uses a Neural Network that was trained on a large dataset with
billions of words and millions of words in the vocabulary.

Learning similarity measures between image patches has been actively investigated in

the past. For example, Zbontar and LeCun [103]] learn to do stereo matching by training a

convolutional neural network to compare image patches. Observe that here the goal is to
learn a similarity measure of the same 3D world under slightly different viewing directions.

Simo-Serra et al. [90] learn feature point descriptors using a Siamese network, where
the output of their algorithm is 128 D feature vector that can be used as a drop-in replace-
ment for any task involving SIFT. They are similar to us in that they too learn a universal
code for image patches. However, they focus on learning a code that is invariant to changes
in the viewpoint, whereas we wish to learn a code that is invariant to fluctuations within a
texture.

Moving beyond image patches, Schroff e al. [89] proposed a network that learns how
to embed face images. The network, termed FaceNet, learns a mapping from face images
to a compact Euclidean space where distances directly correspond to a measure of face
similarity. Standard techniques for recognition, clustering and verification can then be
used on the FaceNet feature vectors.

Recently, Ponjou Tasse and Dodgson [95] proposed a network that learns semantically
meaningful shape descriptors. These descriptors are embedded in a vector space of words
which leads to a cross-modal retrieval system.

All of the above are for specific types of images, for example faces or stereo pairs. We
were inspired by these works, and aim to create a system that works for arbitrary image

patches.

Image Segmentation We use the Berkley Segmentation Dataset (BSDS500) [[69] to train
our CNN. We demonstrate its power on an interactive single-click image segmentation
application.

Interactive image segmentation has been investigated extensively in the past and two
prime examples are GrabCut [86]] and Geodesic Matting [11]. Both these algorithms use
a Gaussian Mixture Model to model the distribution of RGB colors in the object and the

background. In addition, they require user input in the form of scribbles or a bounding box.

10

In our application, on the other hand, we use our features and require just a single point
click from the user.

Single click interactive segmentation was also proposed by Bagon ef al. [10] in the
context of “Segmentation by Composition”. They define an image segment as one that can
be easily composed from its own pieces, but difficult to compose from other pieces in the

image. They use this definition to extract a segment using a single user click.

2.2 Patch Embedding

Our goal is to embed image patches into a low-dimensional representation, such that [,
distances in the representation space correspond to some notion of patch similarity, with
a focus on textured patches. Specifically, we would like to learn a universal embedding
operator f(p) such that for two given patches p; and ps, the distance || f(p1) — f(p2)l|, is
small if p; and p, are similar textures, and large otherwise.

We use a large set of labeled images to learn the embedding in a supervised manner. A
key observation is that humans tend to “understand” textures, thus a segmentation dataset
is suitable as a guide for texture-aware patch embedding. We use a neural network to learn
the patch embedding space. It should be noted that we aim for the network to be applicable
to all natural image patches, and not be domain specific (e.g., face embedding [89]).

During training, we deem patches that were annotated as part of the same segment as
“positive pairs” and pairs from different segments as “negative pairs”. We use a triplet loss
for training: given an anchor patch p, which makes a positive pair with p, and a negative

pair with p,,, the loss for a single triplet is defined as:

L(paap}wpn) = [Hpa _pPHZ - Hpa - ang + m]+7 (2.1)

11

where m is a margin value (set empirically to 0.2) and [z], is defined as max{0,z}. The

triplet loss is a sum over all anchor-positive-negative triplets in the dataset D:

L= Z L(paappapn)- (22)

(Pa>pp,pn)ED

Notice that while p, and p, are by definition from the same photo, the negative example
pn can be from either a different segment in the same photo or from a different photo
altogether. However, it is crucial to select p, from the same photo, thus producing a
triplet which is closer to the separation margin, as patches from the same photo are more
likely to be correlated. Moreover, selecting the entire triplet from the same photo pro-
duces a context-aware learning mechanism. In this way, we are effectively learning an
embedding that separates patches from different segments which co-occur in the same nat-
ural scene. This context-aware exemplar selection separates us from previous works. In
Schroff et al. [89], e.g., all face identities are incorporated in each training batch.

A careful triplet selection is crucial for good convergence. In each mini-batch, we prefer
using only “hard” examples for training. Specifically, for each anchor-positive pair (p,, p,)

we find the set A/ of all negative patches p,, such that the loss falls within margin m:

N(paapp) = {pn | Hpn —pa||§ - ||pp _paH; < m} (2.3)

If multiple such patches exist, we select one at random.

For ground-truth labels, we use the Berkeley Segmentation Dataset (BSDS500) [7].
We randomly sample 50,000 32 x 32 patches from each of the 200 images in the BSDS500
training set. If patches extend beyond image boundaries, we pad the original image, repeat-
ing the boundary pixel values.

We use a similar architecture to the one introduced in FaceNet [89] as implemented

by the OpenFace project [5], with changes to accommodate the difference in patch sizes.

12

Appendix [A.T] contains the neural network specification in Torch. More importantly, we
changed the training regime as explained above.
The network was trained on a (shared) Linux machine with an Intel Xeon Processor

E5-2699 v3 and a Tesla K40 GPU, for 700 epochs. Training took approximately 50 hours.

2.3 Evaluation

We evaluate Texture2Vec on images that were not part of the training set and report both
qualitative and quantitative results. Later on we use Texture2Vec for single-click image
segmentation. We believe that this application is a good test bed to evaluate the quality of
the embedding because it addresses a real-world problem while using the minimal amount
of user input possible, namely a single point click. This puts a heavy burden on the rep-
resentation, which is precisely our goal. Then we show a couple of possible extensions to
highlight the potential power of Texture2 Vec.

A simple way to visualize the embedding is to project the 128D texture codes on the
leading three principal components. Ideally, regions with the same texture will be mapped
to the same pseudo-RGB color. Figure[2.2]demonstrates that on a wide variety of images. In

particular, observe how Texture2Vec maps various textures to uniform pseudo-RGB colors.

2.3.1 Quantitative Evaluation

The first experiment we report measures how good is the embedding in determining
whether a pair of patches come from the same object or not. For each test image we sample
100,000 positive pixel pairs (belonging to the same segment) and 100,000 negative pixel
pairs (belonging to different segments). For each pair (p;, po) we measure the distance d

between the two patch embeddings

d(p1,p2) = || f(p1) — f(P2>H2- (2.4)

13

Figure 2.2: Visualizing Texture2Vec. We project the 128D embedding vectors on a 3D
space and visualize it as pseudo RGB colors. Observe how, for example, the shirt of the
person at the top row on the right is mapped to a nearly constant color. We are also able to
assign different pseudo colors to the building and its reflection (top row) even though they
are very similar in appearance.

14

Method Mean AUC

Random 0.50
Gabor 0.66
Raw pixels 0.69
Mean color 0.70
Our method (validation) 0.75
Our method (testing) 0.76
Our method (training) 0.78
Human 0.86

Table 2.1: Same-Not-Same Evaluation: We measure how well we can predict if a pair of
patches comes from the same segment or not. The evaluation is made by calculating the dis-
tance between the embedding representation of both patches. A number of representations
is evaluated. (Higher is better). Our method outperforms the others by a large margin.

where f(p) is our patch embedding operator. Given a threshold ¢ we can define a binary

classifier C'(py, p2) that determines whether the patches belong to the same segment or not:

same if d(p1,p2) <t
C(p1,p2) = . (2.5)
different if d(py,p2) >t

We use the common receiver operating characteristic curve for all ¢ values and calculate
the area under the curve (AUC). Higher AUC implies a better classifier. We apply the above
procedure on the training, validation and test sets of the BSDS500 dataset [[/]. Note that
only the training set was used in Section [2.2]to create our embedding.

Instead of using our patch embedding operator f(p) we can define other operators and

repeat the above procedure. In particular, we consider:
e Raw pixels: use the RGB values of a given patch.
e Mean color: use the average patch color.

e Gabor: use the response of a filter bank consisting of multiple Gabor filters at differ-

ent orientations and scales.

15

Table [2.1] summarizes all AUC scores. Reasonable values should range between a ran-
dom selection (0.50) and human performance (0.86), which is calculated by predicting one
annotator using another (BSDS500 contains several annotations per image). Our method

scores (.76, compared to the next best method that scored only 0.70.

2.3.2 Single-Click Segment Selection

We use single-click selection to demonstrate the strength of our embedding. Such a narrow
information channel between the user and the algorithm is best suited to investigate the
properties of Texture2Vec.

Given a photo Z, we calculate patch embeddings f(p) for each 32 x 32 image patch in
a preprocessing step. At runtime, the user clicks a single pixel location that corresponds to

patch p.. For all other patches, we calculate the embedding distance

dy :=d(p,pe) = || f(p) — f(p)ll, Vp €T, (2.6)

which yields a per-pixel distance value. Next, we threshold the distances using Otsu’s
method [80] to produce a binary selection mask. As an optional step, the mask can be
refined using snakes [53]] to better snap the selection to image edges.

If preprocessing runtime is a constraint, we compute an embedding for pixels in /K -pixel
strides (horizontally and vertically), and interpolate for the rest of the pixels. This reduces
computation time by a factor of K2. All the results shown here use K = 5. Pre-processing
a 320x480 RGB image takes 40 seconds on standard hardware.

Figure [2.3] shows single-click selection results. Importantly, the click locations were
randomly selected and not hand picked. Examining Figure [2.3] we notice a few interesting
points. Notice how the mask distinguishes between “real” edges and intra-texture edges.
A single click on a textured shirt or a spotted animal is enough to select it all. Another

important property is that training on pixel-accurate masks allows a click near the segment

16

Figure 2.3: Single-click selection results. The user clicks on a single pixel (white dot),
which in turn produces a selection mask. Notice how textured regions such as plaid clothing
or butterfly wings are selected as a single region. The user can fix errors (e.g. part of a
branch selected with the butterfly) with consecutive clicks.

boundary to produce a successful mask. Notice, e.g., the white statue on the third row. The
click is adjacent to a segment boundary, which in turn implies that the surrounding patch
includes elements from several segments. Despite that, we managed to learn that the center
pixel of the patch is a part of the statue segment.

We next want to verify that our method is robust to variations in click locations. Fig-
ure [2.4] shows some qualitative examples. Observe how different seed points lead to vi-
sually similar masks. To quantify the notion of mask stability, we propose the following
mask stability measure. Let M, ...M,, be n masks, where mask M, is a binary image that

equals 1 for segment pixels and 0 anywhere else. Let M = %Z?Zl M; be the average

17

Figure 2.4: Single-click selection stability. Randomly chosen click locations (white dots)
for each segment produce similar selection masks. We show results including edge snap-
ping (top) and without snapping (bottom). Notice how, e.g., click locations on the lizard
texture include dark and bright spots, yet the selection masks remain stable.

mask. Define:

S, M(x)M(x)
OV ==

where x is pixel coordinate. In words, IoU; sums the pixels in M that belong to the segment

2.7)

according to mask M;, normalized by the sum of all pixels in M. The final stability score
is:

1 n
stability = —) " ToU; (2.8)
n

i=1
If all masks are exactly the same, the score is 1.

Equipped with this stability measure, we conducted the following experiment. For
a given image and a non-trivial ground truth segment (larger than 5% of the size of the
image), we randomly sample n = 10 seed points within the segment and use each one
independently to construct a mask, giving us a total of 10 masks per segment. We then
computed stability per segment (Equation [2.8) and averaged over 866 image segments.
For comparison, we repeated this protocol with Diffusion Map embedding as well [37].
Specifically, for a given image, we compute a 128D embedding using Diffusion Maps and
then apply the protocol. Results are reported in Figure [2.5] The figure shows a histogram
of stability scores using both methods, as well as a typical example (top row) of an average

mask for one image. The mask stability score for the example shown in the figure is 0.65.

18

Figure 2.5: Single-Click Selection Stability: (Top) A typical image (left) and its average
mask for a particular segment (right). The stability score for this segment is 0.65 (see
text for details). (Bottom) Histogram of mask stability scores on a data set of 866 image
segments using Texture2Vec and Diffusion Maps. The average stability score of masks
generated using our method is 0.54, which is higher than the 0.40 score obtained by Diffu-
sion Maps.

The average stability score, across the entire set, of Texture2Vec is 0.54, compared to 0.40
for the Diffusion Maps.

Figure 2.6 compares our single-click selection to several other masking methods. A
scribble based method [[61] can produce plausible results, but requires several scribbles (this
holds for other scribble-based methods). Diffusion Maps does not produce good masks,
even when using the best possible time value ¢, measured by comparing to ground-truth
segmentation and finding the optimal operating point of the Receiver Operator Character-
istic (ROC) curve . GrabCut [86] also does not produce the expected result, even when

given a tight bounding box. Classic descriptors such as Gabor filter banks, which histori-

19

cally were used to describe textures [49] cannot mask the full segment via a single click.
We use 8 orientations and 16 wavelengths to produce a 128D Gabor descriptor (same length

as our embedding).

2.3.3 Extensions

Single-Click Image Segmentation is a core algorithm that can be extended in a number of
ways.

The first extension is to multi-image single click segmentation. This scenario is appli-
cable in case we have multiple images, or a video, of some event and we want to segment
the same texture across multiple images. Given the seed pixel selected by the user, we
compute the distance, in embedding space, between the seed pixel and all the pixels in all
the images. We then proceed as in [2.3.2] Results are shown in Figure The sequence
consists of 82 frames and the user clicks on just a single point in the first frame. The method
can handle occlusions and appearance changes without resorting to tracking or higher level
computer vision algorithms. This demonstrates the potential power of a universal texture
representation such as Texture2Vec.

The second extension is a super-pixel application. Super-pixels are an important mid-
level image representation that is often the first step in many image processing and com-
puter vision algorithms.

We compare Texture2Vec to two popular super-pixels methods. The first is SLIC [1],
that uses K-means clustering in x-y-l-a-b space to create the segmentation. SLIC is simple
to code and quite fast, however some important edges are occasionally missed, creating
super-pixels that span two or more image segments. The second is based on edge maps to
guide the algorithm [33]]. Our algorithm is similar to [33]] but replaces La*b* values with
the first three principle components of Texture2Vec.

Figure [2.8| shows a comparison between the methods. Both Dollér et al. [33] and our

method adhere to edges better than SLIC. Our approach is the only one that can distinguish

20

W
(c) Diffusion
(best 1)

(d) Spectral (e) Spectral
(usupervised)

(light supervision)

¥ i S, SN,

e :
(f) Spectral (g) Ours
(supervised)

Figure 2.6: Masking algorithm comparison. (a) GrabCut [86] does not correctly separate
the person. (b) Replacing our patch embedding with a Gabor filter bank response produces
a partial segment. (c¢) Diffusion maps [37]] using the best possible time value ¢. (d) Unsu-
pervised spectral matting [61]] does not accurately separate the texture from the rest of the
image, and lacks user-based control. (e) Two scribbles cannot correct the mask. (f) Fully
supervised spectral matting produces an accurate result, but requires several scribbles. (g)
Our single-click result. The input for (a) is a bounding box (red rectangle), for (b) (c) and
(g) is a single pixel location (white circle), and for (e) and (f) is several scribbles.

21

Figure 2.7: Single-click multi-frame selection. Given an input video (showing frames
0, 33, 50, 81), the user clicks on a single seed point (white dot, top-right image). We
segment all images using distances to this single seed point. Notice how we can select
the object without explicit template matching, despite appearance changes and occlusions.
This demonstrates the universality property of our embedding.

22

RS e

':f (7 3...' O
57 A) g{’.‘

O A T

AU S L0 L
A e ol s N s
SREeSR eI

Ll

) v._,“g‘

s oo
ek

Figure 2.8: Texture Aware Superpixels. We compare (a) SLIC [1I], (b1) a SLIC variant
guided by edge detection [33]] and (c1) our method. Both (b1) and (c1) follow meaningful
edges better than vanilla SLIC (see, e.g., zoomed regions). However, our method does not
follow intra-texture edges, as can be seen when plotting the average super-pixel color in
(b2) and (c2) — we get much smoother colors in the fur region. See text for more details.

between inter-segment edges, that separate the target object from the background, and intra-
segment edges (e.g. the notable edges on the textured fur). Each super pixel in the figure
is assigned the average RGB color of all its pixels. Ideally, we want all super pixels of a
texture to have similar properties (e.g. same color). This way it will be easier for higher
level algorithms, such as image segmentation, to cluster them together.

Figure [2.9] shows results of our super-pixel algorithm on the NYU Depth Dataset [74].
We chose a dataset with different image statistics from the one we trained on, to show that

our network did not overfit to a specific photo type.

23

Figure 2.9: Super-pixel creation on the NYU Depth Dataset [[74]]. We produce useful super-

despite the fact that the dataset statistics are different from BSDS (on which we

trained).

9

pixels

24

2.4 Discussion

Texture2Vec offers a universal embedding of texture patches. The embedding maps patches
with similar textures to nearby vectors in the embedded space. As a result, Euclidean dis-
tance in that space corresponds to the perceptual distance of humans. This is in contrast to
common methods that define distances between patches based on some low-level analysis
of the raw pixel values of the patches.

However, the implementation is still limited. We use a fairly small training set (the
BSDS500 data set). This affects the quality of the embedding because it is bounded by
the size and quality of the training set. Hopefully, working with more data, and with bet-
ter and richer data augmentation, can further improve the embedding. Another problem
that we currently face is that we use an image segmentation dataset to train our model.
As a result we treat image segments as having the same texture, which is not always the
case in practice. This can probably be addressed by collecting more data geared towards
Texture2Vec.

We believe that Texture2Vec opens the door to a wide variety of image editing appli-
cations. In particular, we demonstrate a number of possible use cases. The first is a single
click segmentation scenario. In this scenario, the user clicks a single point and the system
determines the image segment automatically, based on patch similarities in the embedded
space. We next presented a multi-image single click segmentation where a single click
in one image is propagated to other images automatically. This is made possible by the
universal property of the embedding that lets us measure distances between patches taken
from different images. Finally, we have used Texture2Vec representation for super pixel
generation, by replacing pixel RGB values with our embedding vectors.

In the future, we would like to develop tools that will let us reduce the dependency on
labeled training data, using possibly self-supervised or unsupervised techniques. We would
also like to explore ways to synthesize data that will help us refine and augment the training

set.

25

Chapter 3

Detection And Removal Of Distracting

Photo Elements

“Photographers deal in things which are continually vanishing and when they have vanished there is no

contrivance on earth which can make them come back again.’

— Henri Cartier-Bresson, The Mind’s Eye: Writings on Photography and Photographers (1999)

Taking pictures is easy, but editing them is not. Professional photographers expend
great care and effort to compose aesthetically-pleasing, high-impact imagery. Image edit-
ing software like Adobe Photoshop empowers photographers to achieve this impact by
manipulating pictures with tremendous control and flexibility — allowing them to carefully
post-process good photos and turn them into great photos. However, for most casual pho-
tographers this effort is neither possible nor warranted. Last year Facebook reported that
people were uploading photos at an average rate of 4,000 images per second. The over-
whelming majority of these pictures are casual — they effectively chronicle a moment, but
without much work on the part of the photographer. Such cases may benefit from semi- or
fully-automatic enhancement methods.

Features like “Enhance” in Apple’s iPhoto or “Auto Tone” in Photoshop supply one-

click image enhancement, but they mainly manipulate global properties such as exposure

26

and tone. Likewise, Instagram allows novices to quickly and easily apply eye-catching
filters to their images. Although they have some more localized effects like edge darkening,
they apply the same recipe to any image. However, local, image-specific enhancements
like removing distracting areas are not handled well by automatic methods. There are
many examples of such distractors — trash on the ground, the backs of tourists visiting
a monument, a car driven partially out of frame, etc. Removing distractors demands a
time-consuming editing session in which the user manually selects the target area and then
applies features like iPhoto’s “Retouch Tool” or Photoshop’s “Content Aware Fill” to swap
that area with pixels copied from elsewhere in the image.

In this work we take the first steps towards semi-automatic distractor removal from
images. The main challenge towards achieving this goal is to automatically identify what
types of image regions a person might want to remove, and to detect such regions in arbi-
trary images. To address this challenge we conduct several studies in which people mark
distracting regions in a large collection of images, and then we use this dataset to train a
model based on image features.

Our main contributions are: (1) defining a new task called “distractor prediction”, (2)
collecting a large-scale database with annotations of distractors, (3) training a prediction
model that can produce distractor maps for arbitrary images, and (4) using our prediction
model to automatically remove distractors from images.

In the following sections we describe related work (Section [3.1)), describe and analyze
our datasets (Section [3.2)), explain our distractor prediction model (Section [3.3), evaluate
our predictor (Section [3.4) and present applications of distractor prediction (Section [3.5).
With this publication we also make available an annotated dataset containing images with

distractors as well as code for both analyzing the dataset and computing distractor maps.

27

Figure 3.1: User annotations. Top: 35 user annotations for one input image. Bottom, from
left to right: input image, average annotation, overlay of thresholded annotation with input
image. We collected 11244 such annotations for 1073 images.

3.1 Related Work

A primary characteristic of distractors is that they attract our visual attention, so they are
likely to be somewhat correlated with models of visual saliency. Computational saliency
methods can be roughly divided into two groups: human fixation detection [48], 42} 51]] and
salient object detection [28, 127,168, 166]]. Most of these methods used ground-truth gaze data
collected in the first 3-5 seconds of viewing (a few get up to 10 seconds) [51]. Although
we found some correlation between distractor locations and these early-viewing gaze fixa-
tions, it was not high. Our hypothesis is that humans start looking at distractors after longer

periods of time, and perhaps only look directly at them when following different viewing

28

instructions. Existing computational saliency methods are thus insufficient to define visual
distractors, because the main subject in a photo where people look first usually has a high
saliency value. Moreover, many of these methods (especially in the second category) in-
clude components that attenuate the saliency response away from the center of the image
or from the highest peaks - exactly in the places we found distractors to be most prevalent.

Another line of related work focuses on automatic image cropping [93,167, [105]]. While
cropping can often remove some visual distractors, it might also remove important content.
For instance, many methods just try to crop around the most salient object. Advanced
cropping methods [105] also attempt to optimize the layout of the image, which might
not be desired by the user and is not directly related to detecting distractors. Removing
distractors 1s also related to the visual aesthetics literature [54, 165, [72), |I94] as distractors
can clutter the composition of an image, or disrupt its lines of symmetry. In particular,
aesthetics principles like simplicity [S4] are related to our task. However, the computational
methods involved in measuring these properties don’t directly detect distractors and don’t
propose ways to remove them.

Image and video enhancement methods have been proposed to detect dirt spots,
sparkles [S8]], line scratches [S0] and rain drops [35]. In addition, a plethora of popular
commercial tools have been developed for face retouching: These typically offer manual
tools for removing or attenuating blemishes, birth marks, wrinkles etc. There have been
also a few attempts to automate this process (e.g., [97]]) that require face-specific tech-
niques. Another interesting work [92] focused on detecting and de-emphasizing distracting
texture regions that might be more salient than the main object. All of the above methods
are limited to a certain type of distractor or image content, but in this work we are interested

in a more general-purpose solution.

29

Mechanical Turk Mobile App

Number of images 403 376
Annotations per image 27.8 on average 1
User initiated No Yes
Image source Previous datasets ~ App users

Table 3.1: Dataset comparison.

3.2 Datasets

We created two datasets with complementary properties. The first consists of user anno-
tations gathered via Amazon Mechanical Turk. The second includes real-world use cases
gathered via a dedicated mobile app. The Mechanical Turk dataset is freely available, in-
cluding all annotations, but the second dataset is unavailable to the public due to the app’s
privacy policy. We use it for cross-database validation of our results (Section [3.4)). Table

[3.T]and the following subsections describe the two datasets.

3.2.1 Mechanical Turk Dataset (MTurk)

For this dataset we combined several previous datasets from the saliency literature [3} 51,
62] for a total of 1073 images. We created a Mechanical Turk task in which users were

shown 10 of these images at random and instructed as follows:

For each image consider what regions of the image are disturbing or distracting from
the main subject. Please mark the areas you might point out to a professional photo
editor to remove or tone-down to improve the image. Some images might not have

anything distracting so it is ok to skip them.

The users were given basic draw and erase tools for image annotation (Figure [3.2)). We
collected initial data for the entire dataset (average of 7 annotations per image) and used it
to select images containing distractors by consensus: An image passed the consensus test

if more than half of the distractor annotations agree at one or more pixels in the image.

30

403 images passed this test and were used in a second experiment. We collected a total of

11244 annotations, averaging 27.8 annotations per image in the consensus set (figure[3.1]).

3.2.2 Mobile App Dataset (MApp)

Although the Mechanical Turk dataset is easy to collect, one might argue that it is biased:
Because Mechanical Turk workers do not have any particular expectations about image en-
hancement and cannot see the outcome of the intended distractor removal, their annotations
may be inconsistent with those of real users who wish to remove distractors from images.
In order to address this, we also created a second dataset with such images: We created
a free mobile app (Figure that enables users to mark and remove unwanted areas in
images. The app uses a patch-based hole filling method [12] to produce a new image with
the marked area removed. The user can choose to discard the changes, save or share them.
Users can opt-in to share their images for limited research purposes, and over 25% of users
chose to do so.

Using this app, we collected over 5,000 images and over 44,000 fill actions (user strokes
that mark areas to remove from the image). We then picked only images that were exported,
shared or saved by the users to their camera roll (i.e.not discarded), under the assumption
that users only save or share images with which they are satisfied.

Users had a variety of reasons for using the app. Many users removed attribution or
other text to repurpose images from others found on the internet. Others were simply
experimenting with the app (e.g. removing large body parts to comical effect), or clearing
large regions of an image for the purpose of image composites and collages. We manually
coded the dataset to select only those images with distracting objects removed. Despite
their popularity, we also excluded face and skin retouching examples, as these require
special tools and our work focused on more general images. After this coding, we used the

376 images with distractors as our dataset for learning.

31

Figure 3.2: Data collection interfaces. Left: MTurk interface with basic tools for marking
and removal. Right: Mobile app using inpainting with a variable brush size, zoom level
and undo/redos.

3.2.3 Data Analysis

Our datasets afford an opportunity to learn what are the common locations for distractors.
Figure [3.3shows the average of all collected annotations. It is clear that distractors tend to
appear near the boundaries of the image, with some bias towards the left and right edges.
We use this observation later in Section

We can also investigate which visual elements are the most common distractors. We
created a taxonomy for the following objects that appeared repeatedly as distractors in both
datasets: spot (dust or dirt on the lens or scene), highlight (saturated pixels from light
sources or reflections), face, head (back or side), person (body parts other than head or
face), wire (power or telephone), pole (telephone or fence), line (straight lines other than
wires or poles), can (soda or beer), car, crane, sign, text (portion, not a complete sign),
camera, drawing, reflection (e.g.in images taken through windows), trash (garbage, typ-
ically on the ground), trashcan, hole (e.g.in the ground or a wall).

Treating each annotated pixel as a score of 1, we thresholded the average annotation
value of each image in the MTurk dataset at the top 5% value, which corresponds to 0.18,
and segmented the results using connected components (Figure [3.1). For each connected

component we manually coded one or more tags from the list above. The tag object was

32

Figure 3.3: An average of all collected annotations. Distractors tend to appear near the
image boundary.

used for all objects which are not one of the other categories, whereas unknown was used to
indicate regions that do not correspond to discrete semantic objects. We also included three
optional modifiers for each tag: boundary (a region touching the image frame), partial
(usually an occluded object) and blurry. Figure [3.4] shows the histograms of distractor
types and modifiers. Notice that several distractor types are quite common. This insight
leads to a potential strategy for image distractor removal: training task-specific detectors for
the top distractor categories. In this work we chose several features based on the findings of
figure [3.4] (e.g.a text detector, a car detector, a person detector, an object proposal method).
An interesting direction for future work would be to implement other detectors, such as
electric wires and poles.

All distractor annotations for the MTurk dataset are freely available for future research

as part of our dataset.

33

Distractor Types Property Types

object
person

highlight

others

spot
unknown
wire

car]
reflection boundary
pole
text]
sign
trash

shadow

line
artial 1
hole P

crane

trashcan - blurry .

can

camera

| | | | | | | |
0 50 100 150 200 250 300 0 200 400 600 800
Number of distractors Number of distractors

Figure 3.4: Distractor types. Left: histogram of distractor types described in Sectionm
Right: histogram of distractor properties, indicating whether the distractor is close to the
image boundary, occluded/cropped or blurry.

34

3.3 Distractor Prediction

Given input images and user annotations, we can construct a model for learning distractor
maps. We first segment each image (section [3.3.1)). Next we calculate features for each
segment (section [3.3.2)). Lastly, we use LASSO [96] to train a mapping from segment
features to a distractor score — the average number of distractor annotations per pixel

(section [3.3.3)). The various stages of our algorithm are shown in figure[3.5]

3.3.1 Segmentation

Per-pixel features can capture the properties of a single pixel or some neighborhood around
it, but they usually do not capture region characteristics for large regions. Thus, we first
segment the image and later use that segmentation to aggregate measurements across re-
gions. For the segmentation we use multi-scale combinatorial grouping (MCG) [6]. The
output of MCG is in the range of [0, 1] and we use a threshold value of 0.4 to create a hard
segmentation. This threshold maximizes the mean distractor score per segment over the en-
tire dataset. We found empirically that the maximum of this objective segments distracting

objects accurately in many images.

3.3.2 Features

Our datasets and annotations give us clues about the properties of distractors and how to
detect them. The distractors are, by definition, salient, but not all salient regions are dis-
tractors. Thus, previous features used for saliency prediction are good candidate features
for our predictor (but not sufficient). We also detect features that distinguish main subjects
from salient distractors that might be less important, such as objects near the image bound-
ary. Also, we found several types of common objects appeared frequently, and included

specific detectors for these objects.

We calculate per-pixel and per-region features. The 60 per-pixel features are:

35

Figure 3.5: Various stages of our algorithm. Top left: original image. Top right: MCG
segmentation. 2nd row: examples of 6 of our 192 features. 3rd row left: our prediction, red
(top three), yellow (high score) to green (low score). 3rd row right: ground truth. Bottom
row: distractor removal results, with threshold values 1, 2, 3, 20 from left to right. The
3 distractors are gradually removed (3 left images), but when the threshold is too high,
artifacts start appearing (far right).

36

e (3) Red, green and blue channels.

e (3) Red, green and blue probabilities (as in [51]]).

e (5) Color triplet probabilities, for five median filter window sizes (as in [S1]).
o (13) Steerable pyramids [91].

o (5) Detectors: cars [38], people [38]], faces [101], text [73], horizon [[78, 51].
e (2) Distance to the image center and to the closest image boundary.

e (7)* Saliency prediction methods [47), 48] 66, 68, [78]].

e (2)* Object proposals [[109]: all objects, top 20 objects. We sum the scores to create a single

map.

e (2) Object proposals [109]: all objects contained in the outer 25% of the image. We create 2

maps: one by summing all scores and another by picking the maximal value per pixel.

e (9) All features marked with *, attenuated by 7 = 1 — G/ max (G). G is a Gaussian the size
of the image with a standard deviation of 0.7 * v/d; * do (dy and dy are the height and width

of the image) and centered at the image center.

e (9) All features marked with *, attenuated by F as defined above, but with the Gaussian

centered at the pixel with the maximal feature value.

All the per-pixel features are normalized to have zero mean and unit variance.

To use these per-pixel features as per-segment features, we aggregate them in various
ways: For each image segment, we calculate the mean, median and max for each of the 60
pixel features, resulting in 180 pixel-based features per segment.

Lastly, we add a few segment-specific features: area, major and minor axis lengths, ec-
centricity, orientation, convex area, filled area, Euler number, equivalent diameter, solidity,
extent and perimeter (all as defined by the Matlab function regionprops). All features

are concatenated, creating a vector with 192 values per image segment.

37

3.3.3 Learning

For each image in our dataset we now have a segmentation and a feature vector per segment.
We also have user markings. Given all the markings for a specific image, we calculate the
average marking (over all users and all segment pixels) for each segment. The calculated
mean is the ground truth distractor score for the segment.

We use Least Absolute Selection and Shrinkage Operator (LASSO) [96] to learn a
mapping between segment features and a segment’s distractor score. All results in this
paper are using LASSO with 3-fold cross validation. Using LASSO allows us to learn the
importance of various features and perform feature selection (section (3.3.4).

Besides LASSO, we also tried linear and kernel SVM [36] and random forests with
bootstrap aggregating [17]. Kernel SVM and random forests failed to produce good re-
sults, possibly due to overfitting on our relatively small dataset. Linear SVM produced
results almost as good as LASSO, but we chose LASSO for its ability to rank features and
remove unnecessary features. Nonetheless, linear SVM is much faster and may be a viable

alternative when training time is critical.

3.3.4 Feature Ranking

Table [3.2] shows the highest scoring features for each of the datasets. We collect the feature
weights from all leave-one-out experiments using LASSO. Next we calculate the mean of
the absolute value of weights, providing a measure for feature importance. The table shows
the features with the largest mean value.

Using our feature ranking we can select a subset of the features, allowing a trade-off
between computation and accuracy. Using the label Fk to denote the set of & highest
scoring features when trained using all features, Table shows results with only F5 and
F10 features. Although these results are less accurate than the full model, they can be
calculated much faster. (But note that feature sets Fk as defined above are not necessarily

the optimal set to use for training with £ features.)

38

MTurk MApp

Torralba saliency'f Torralba saliency?!

RGB Green? Coxel saliency?

Torralba saliency?' RGB Probability (W=0)"
Itti saliency'' RGB Probability (W=2)?

RGB Blue probability® Text detector!
RGB Probability (W=4)! RGB Green probability’
RGB Probability (W=2)! Boundary object proposals’

Object proposals® Hou saliency®
RGB Probability (W=16)! Hou saliency'!
Distance to boundary?® Steerable Pyramids?

Imean 2median >max

fattenuated with an inverted Gaussian around image center
fattenuated with an inverted Gaussian around maximal value

Table 3.2: Feature selection. For each dataset we list the features with the highest mean
feature weight across all experiments.

3.4 Evaluation

For evaluation, we plot a receiver operating characteristic (ROC) curve (true positive rate
vs. false positive rate) and calculate the area under the curve (AUC) of the plot. We use a
leave-one-out scheme, where all images but one are used for training and the one is used
for testing. We repeat the leave-one-out experiment for each of our images, calculating the
mean of all AUC values to produce a score.

Table [3.3] summarizes our results. A random baseline achieves a score of 0.5. We
achieve an average AUC of 0.81 for the MTurk dataset and 0.84 for the MApp dataset. The
LASSO algorithm allows us to learn which of the features are important (section[3.3.4) and
we also report results using subsets of our features (Table [3.4). As expected, these results
are not as good as the full model, but they are still useful when dealing with space or
time constraints (less features directly translate to less memory and less computation time).
We also report results for previous saliency methods as well as a simple adaptation to
these methods where we multiply the saliency maps by an inverted Gaussian (as described

in Sec. [3.3.2). This comparison is rather unfair since saliency methods try to predict all

39

Method MTurk AUC MApp AUC

Random 0.50 0.50
Saliency IV* [78] 0.55 0.56
Saliency I [66] 0.57 0.53
Saliency I* [66] 0.58 0.59
Saliency II [68] 0.59 0.57
Saliency IT* [68] 0.59 0.57
Saliency III* [47]] 0.62 0.59
Saliency III [47] 0.65 0.69
Saliency I [66] 0.67 0.65
Saliency II' [68] 0.68 0.68
Saliency IIIT [47]] 0.70 0.75
Saliency IVT 78] 0.72 0.72
Saliency IV [78] 0.74 0.76
Our method 0.81 0.84
Average Human 0.89 -

Tattenuated with an inverted Gaussian around image center
fattenuated with an inverted Gaussian around maximal value

Table 3.3: AUC scores. We compare against saliency prediction methods as published, and
the same methods attenuated with an inverted Gaussian, as described in Section Our
method outperforms all others. As an upper bound we report average human score, which
takes the average annotation as a predictor (per image, using a leave-one-out scheme). We
also compared against individual features from Table[3.2](not shown): all scores were lower
than our method with a mean score of 0.59.

salient regions and not just distractors. However, the low scores for these methods show

that indeed distractor prediction requires a new model based on new features.

3.4.1 Inter-Dataset Validation

Using Mechanical Turk has the advantage of allowing us to get a lot of data quickly, but
might be biased away from real-world scenarios. We wanted to make sure that our images
and annotation procedure indeed match distractor removal “in the wild”. For that purpose
we also created dataset collected using our mobile app (MApp dataset), which contains
real world examples of images with distractors that were actually removed by users. We

performed inter-dataset tests: training on one dataset and testing on the other, the results

40

Method Average # MTurk AUC
of used features

Ours (F-5 features) 3.40 0.72
Ours (F-10 features) 7.43 0.80
Ours (all features) 28.06 0.81

Table 3.4: AUC scores. Results using all 192 features and subsets F5 and F10 described in
Section [3.3.4] Column 2 is the mean (over all experiments) of the number of features that
were not zeroed out by the LASSO optimization. F10 produces a score similar to the full
model, while using 5% of the features.

Train Test # of features # ofused AUC

Dataset Dataset features
MTurk MApp 192 37 0.86
MApp MTurk 192 25 0.78

Table 3.5: Inter-dataset AUC scores. We train on one dataset and test on the other, in order
to validate that our MTurk dataset is similar enough to the real-world use cases in MApp
to use for learning.

are summarized in table We show good results for training on MTurk and testing on
MApp (0.86) and vice versa (0.78). The MApp dataset contains a single annotation per
image (vs. 27.8 on average for the MTurk one). We therefore believe that the value 0.78

can be improved as the MApp dataset grows.

3.5 Applications

We propose a few different applications of distractor prediction. The most obvious appli-
cation is automatic in-painting (Section[3.5.1), but the ability to identify distracting regions
of an image can also be applied to down-weight the importance of regions for image re-
targeting (Section [3.5.2). We also posit that image aesthetics and automatic cropping can

benefit from our method (Section [3.6).

41

3.5.1 Distractor Removal

The goal of distractor removal is to attenuate the distracting qualities of an image, to im-
prove compositional clarity and focus on the main subject. For example, distracting regions
can simply be inpainted with surrounding contents. To illustrate this application we created
a simple interface with a single slider that allows the user to select a distractor threshold
(figure [3.6). All segments are sorted according to their score and the selected threshold
determines the number of segments being inpainted (figure [3.5). For a full demo of this
system please see our supplementary video. Some before and after examples are shown in

figure We chose a rank order-based user interface as it is hard to find one threshold

Figure 3.6: User interface for distractor removal. The user selects the amount of distracting
segments they wish to remove. We refer the reader to the accompanying video for a more
lively demonstration.

42

that would work well on all images, however we found that if distractors exist in an image

they will correspond to the first few segments with the highest score.

3.5.2 Image Retargeting

Image retargeting is the task of changing the dimensions of an image, to be used in a
new layout or on a different device. Many such methods have been developed in the past
years [9, 87]. In addition to the input image and the desired output size, many of them
can take an importance mask, which may be derived (based on image gradients, saliency
prediction and gaze data) or provided by the user.

We can thus use our distractor prediction model to enhance a retargeting technique such
as seam-carving [9]. For this application we view the distractor map as a complement to
a saliency map: Whereas saliency maps give information regarding areas we would like to
keep in the output image, a distractor map gives information regarding areas we would like
to remove from the output. We thus calculate the gradient magnitudes of the image (G) and
our distractor prediction map (D). Next, we invert the map (D’ = 1 — D) and normalize for
zero mean and unit standard deviation (@ , D). Our final map is G+aD'. Weuse o = 1.

Even this simple scheme produces good results in many cases. In figure [3.8] notice
how the top-right image does not contain the red distractor and the bottom-right image
does not contain the sign on the grass. (See figure |3.7|for the full distractor maps for these
images.) However, we believe that a model which combines saliency and distractor maps

will produce superior results. The creation of such a model is left for future work.

3.6 What’s Next For Distractor Prediction?

We have acquired a dataset of distracting elements in images, used it to train a learning

algorithm to predict such regions in novel images, and applied our predictor to a novel

43

Figure 3.7: Examples of distractor removal results. Each quadruplet shows (from left to
right): (1) Original image. (2) Normalized average ground-truth annotation. (3) Order of
segments as predicted by our algorithm. (4) Distractor removal result. We urge the reader
to zoom in or to look at the full resolution images available as supplementary material. The
number of segments to remove was manually selected for each image. Segments are shown
on a green-to-yellow scale, green being a lower score. Segment selected for removal are
shown on an orange-to-red scale, red being a higher score. Notice how the red segments
correlate with the ground-truth annotation. Also notice that we manage to detect a variety
of distracting elements (a sign, a person, an abstract distractor in the corner, etc.)

Figure 3.8: Image retargeting using seam carving [9]. From left to right: original image,
retargeted image using a standard cost function (gradient magnitude), retargeted image
using distractor cost function described in Section [3.5.2}

system that can in-paint distractors, removing them from an image with little or no user
input.

Although our system shows great promise, there is plenty of room for improvement.
Figure[3.9]illustrates several cases where our approach produces unsatisfactory results: The
first two cases on the left illustrate a failure of our learned model. We predict the patch on
the jeans of the main subject, and an entire person, even though they are critical parts of the
main subject or the composition. The third example shows a segmentation failure, where
only part of the arm at the lower right corner is removed. The last shows a removal-method

failure, in which the sign behind the right person is correctly detected as distracting, but

46

Figure 3.9: Two model failures, a segmentation failure, and an in-painting failure (see
Section @ Top row: original images. Bottom row: output images.

our patch-based hole filling method failed to remove it properly and instead duplicated the
person.

Each of these failures suggests directions for future work. The first two cases sug-
gest our model could be improved by using features related to image composition, a main
subject detector, or relations between different elements in the image. The segmentation
failure suggests focusing on improving the segmentation using the detected saliency. And
of course, other image manipulations beyond patch-based hole filling [12] could be used to
attenuate distractors like the last example: Since color saturation and contrast are key com-
ponents of distractors, we can also consider removing them via de-saturation, exposure and
contrast attenuation, blurring and various other methods. Implementing several removal
methods and learning a model to automatically select the best one for a given distractor is
an interesting direction for future work.

There are also additional applications of distractor prediction that we have not fully
explored. For example, in addition to retargeting and inpainting, automatic cropping
could make use of distractor maps. However, since objects cut off at the edge of frame are
often highly distracting, one would have to take into account the change in prediction that
occurs as a result of the crop itself. One could also consider the use of distractor prediction

as a cue for computational image aesthetics methods.

47

Chapter 4

Content-specific Photo Editing

“There are no bad pictures, that’s just how your face looks sometimes.”
— Unknown, (falsely attributed to Abraham Lincoln)

“I’ve never met a person I couldn’t call a beauty.”

— Andy Warhol, The Philosophy of Andy Warhol (1975)

In more than a century since the invention of the daguerreotype, photographers have
developed a set of conventions for effective composition of a photo. For example, the
combination of subject pose, camera angle, and lighting can help define a jawline. Even
the camera distance to the subject impacts perception; the literature shows that portraits
taken up close are associated with terms such as “peaceful” and “approachable”, whereas
headshots taken from further away are perceived as “attractive”, “smart” and “strong” [[19,
81, 182].

This paper introduces a method that can subtly alter apparent camera distance and head
pose after a portrait has been taken (Figure {.1)). This system fits a virtual camera and a
parametric 3D head model to the photo, then models changes to the scene in the virtual
camera, and finally approximates those changes using a 2D warp in the image plane. Sim-

ilar frameworks have been used for a variety of applications including changing pose and

48

(a) near: real photo (c) near: warped from (a) (e) anaglyph from (d)

(b) far: warped from (d) (d) far: real photo (f) rotated from (d)

Figure 4.1: Comparing real photos taken with a near (a) or far (d) camera, one can observe
the subtle effect of perspective on portrait photos. We simulate this effect by warping (d)
— (c) to match the apparent distance of (a); and also (a) — (b) to match the distance of
(d). These warps are guided by an underlying 3D head model. This framework can also
generate stereo anaglyphs (e) and apparent head rotation (f).

49

gender [14], face transfer [[102], and expression transfer [108]. Our work specifically builds
on the FaceWarehouse approach of Chen et al. [24]. These prior methods all use a weak
perspective camera model, which is a reasonable approximation only when scene points
are all at a similar distance to the camera. In contrast, our approach uses a full perspective
camera model, which allows us to modify camera distance and handle scenes that come
very close to the camera. In a full perspective camera model, the distance and field of view
parameters are nearly interchangeable, which makes optimization challenging. Neverthe-
less, this model is necessary for several of the effects that we show, especially treatment of
“selfies.”

Today most photos are taken using mobile devices with fixed focal length. This trend
accounts for the sudden explosion of the “selfie” — 2013 word of the year in the Oxford
Dictionary — meaning a portrait taken of oneself, often with a smartphone. Selfies are
typically shot at arm’s length, leading to visible distortions similar to the fisheye effect but
with their own characteristics, most notably an enlarged nose. In some cases this selfie
effect may be desired, but professional portrait photographers often prefer to position the
camera several meters from the subject, using a telephoto lens to fill the frame with the
subject [99]]. Figure 4.2 shows two photos of the same subject, revealing the effects of this
tradeoff [[79]. Our framework allows one to simulate a distant camera when the original shot
was a selfie, and vice versa, in order to achieve various artistic goals — reducing distortion,
making a subject more approachable, or adapting a portrait such that it may be composited
into a group shot taken at a different distance.

We show that our framework can also create convincing stereo pairs from input por-
traits or videos, rendered as anaglyphs. The approach relies on the full perspective camera
available in our 3D model. Finally, our method is also capable of other applications shown
in previous work using a weak perspective model, such as simulating small rotations of the

subject’s head. Our main contributions are:

e The ability to edit perceived camera distance in portraits.

50

A robust head fitting method that estimates camera distance.

A new image warping approach that approximates changes in head or camera pose.

A method to create stereo pairs from an input portrait.

Evaluation of our approach using an existing dataset and a new dataset captured for

this purpose.

4.1 Related Work

Despite a large body of work on face modeling, 3D face shape estimation from a single
image is still considered challenging, especially when the subject is captured under uncon-
strained conditions (varying expressions, lighting, viewpoint, makeup, facial hair). High
quality face reconstruction methods often require the subject to be scanned under con-
trolled laboratory conditions with special equipment such as lighting rigs and laser scan-
ners [32} 104, 4, [16]]. Kemelmacher and Seitz [56] showed it is possible to reconstruct a
face shape from a large Internet collection of a person’s photos using ideas from shape from
shading. These methods are not applicable in a single photo scenario.

In their seminal work, Blanz and Vetter [14] fit a 3D face morphable model to a single
input image, texture-map a face image onto a 3D mesh, and parametrically change its
pose and identity. Vlasic et al. [102] extended their work using a multilinear model to
handle expressions and visemes. FaceWarehouse [24] extended the model from the face
region to an entire head shape. Other single-image reconstruction methods include an
approach based on patch-based depth synthesis from a 3D dataset [44], photometric stereo
with a 3D template prior [53] and a 3D template corrected with a flow optimization [43]].
Unlike morphable models, the latter do not allow changing the identity and expression of
the subject.

In order to edit 3D face properties in a photograph using any of the above methods, the
face has to be accurately segmented from the background, texture-mapped onto the face

mesh, and then projected back to the image after the mesh is edited. The background, the

51

rest of the head, and the eyes and teeth must be adjusted — often manually — to fit the pose
change. This complex pipeline can result in an unrealistic appearance due to artifacts of
segmentation, color interpolation, and inpainting.

An alternative approach uses the 3D model to generate a 2D warp field induced from
a change in 3D, and apply this warp directly on the photograph [[108, [106]. This approach
doesn’t support extreme edits, but it can be fully automated and often leads to more realistic
results. We adopt this approach, driving our warp field with a multilinear morphable model
with parametrized pose, identity, and expression.

Existing morphable model methods typically have two main drawbacks: First, the cam-
era distance is given as input (or assumed to be infinite) and remains fixed; and second,
there are no annotations near the top of the head, which we show poses a major problem
for fitting and altering the apparent camera distance. We extend a multilinear model to in-
corporate camera distance, and present an optimization algorithm for the more challenging
fitting problem that results. We also add a few annotations in some key locations and show
in Section {4.3[that these are critical for our application.

The methods of Cao et al. [23, 22] and Hassner et al. [45] estimate a perspective camera
model similar to our approach. Cao et al. drive a real-time animation with an input head
video, but their system uses multiple frames for accurate estimation of model parameters,
whereas our goal is to use a single input image. We tested some of their underlying as-
sumptions and found them inapplicable to the case of single-image input (Section {.2.3).
Also, Cao et al. reduce the intrinsic matrix to a single parameter estimation (focal length),
fixing the principal point offset to zero. In order to support, for example, cropped images,
our model estimates this offset as well (2 extra parameters). Hassner et al. frontalize a face
given an input image. They estimate the intrinsic camera matrix given a fixed 3D template
model, since an accurate fit is not required for their task. In contrast, our method addresses
the harder problem of jointly estimating camera and model parameters. Nonetheless, some

features of the method proposed by Hassner et al. are complementary to ours, for exam-

52

ple “borrowing” features from one side of the face to complete the other could be used to
augment our system, in the case where there are occlusions in the input.

The perceptual literature draws a direct connection between camera distance, lens focal
length, and the way we perceive people in photos: Portraits taken from up close are asso-
ciated with terms such as “peaceful” and “approachable”, while those taken from further
away are “attractive”, “smart” and “strong” [81, 19, 82]. Cooper et al. [31] further showed
that portraits taken using a 50-mm lens are most likely to be viewed from a distance from
which the percept will be undistorted.

The Caltech Multi-Distance Portraits Dataset [21] contains portraits of different sub-
jects taken from various distances. In their paper, the authors created a way to estimate the
camera distance from an input portrait photo. We use their dataset to evaluate our method.

No previous method suggests changing the apparent camera distance in a photo. As far
as we know, we present the first work to address the task of fixing portrait distortions due

to camera distance.

4.2 Our Method

To perform perspective-aware manipulation, first we formulate a parameterized 3D model
for a head and camera (Section 4.2.1)), automatically detect fiducials in a photo (Sec-
tion 4.2.2)), and fit the model to the observed fiducials (Section 4.2.3)). Next, we can alter
the parameters of the model (e.g., move the camera or head pose, Section 4.2.4) and then

approximate the resulting 3D changes as a 2D warp to the input image (Section §.2.5).

4.2.1 Tensor Model

Our head model builds on the dataset collected by Chen et al. [24]. This dataset contains
scans of 150 individual heads, each in 20 poses. Each head has 11,510 vertices in 3D

(34,530 DOF). Expressions are represented by a blendshape model using 47 shapes.

53

(©Anton Orlov, used with permission.

Figure 4.2: Compare focal lengths. Left: close-up using 90mm wide angle lens with a
large format camera (29mm equivalent on 35mm film). Right: distant shot with 265mm
telephoto lens (84mm equiv.)

Let us denote the average of all heads in the dataset as A € R34530x1. We calculate the
difference of each head from the average and arrange the data in a tensor Z € Rgy530%150%475
with dimensions corresponding to vertices, identities and expressions, respectively. We use
high order SVD (HOSVD) [98]] to calculate a core tensor C' € Rygx50x25. Here our ap-
proach differs from that of Chen et al. [24]], who do not perform SVD on the vertex dimen-
sion. We find that our compact representation still produces good results. Given the core
tensor we use an identity vector § € R;.50 and an expression vector 7 € Ry o5, together
with the original vector expansion calculated by HOSVD v € Rgy530x40 to generate a head

with a specific expression and identity F” via:

Fr=(C® v®R37)+ A 4.1)

54

Input Initialization Rotation & Identity &
Translation Expression

— iterations —

Full Camera 3D Landmarks Final Fit

Figure 4.3: Fitting procedure. Green dots are 2D fiducial points. Red dots are corre-
sponding points on 3D mesh (shown in blue). Purple dots in initialization image are three
manually annotated fiducials for top of head and ears. Images, from left to right: Input.
Initialization gives a rough fit, but with some misalignments (e.g. eyes). Solving rotation
and translation improves the silhouette fit (e.g. chin). Solving identity and expression fixes
the eye and mouth misalignment. Solving the full camera model improves, in this case, the
top of the head. After 3D landmark update the alignment is worse, but landmark locations
on the 3D mesh are more accurate. Repeating the process produces a good final fit.

Here ®; is the standard tensor-vector multiplication in the i-th dimension. Let us denote
F" € Ryx11510 as the natural reshape of F’ such that each row contains x, y, and z co-
ordinates respectively, with an added row of ones to create homogeneous coordinates. In
order to generate a head in a specific location and orientation, as seen by a camera, we
need to multiply the head vertices (which are in the model coordinate system) with trans-

lation 7" = [13] — t] € Rsyx4, rotation R € Rj.3 and the upper-triangular intrinsic matrix

55

K € R3y3. Thus, our full model (omitting the perspective divide for simplicity) is:

F=K-R-T-F" 4.2)

We found that a general intrinsic matrix A with five parameters leads to bad shape estima-
tion. Instead we constrain the skew to be zero and the horizontal and vertical focal length
parameters to be the same — reasonable assumptions for unaltered photos from modern
cameras. This intrinsic matrix constrained to three DOFs significantly improves the fit.
We contrast this full perspective model with previous work that uses weak perspective
(e.g. [102, 108, 107, 24]) — essentially using orthographic projection, followed by non-
uniform scaling. With weak perspective camera distance is represented by scaling, so there

is no way to adjust distortions due to nearby cameras, e.g., as seen in selfies.

4.2.2 Fiducial Detection

The method of Saragih et al. [88] automatically detects 66 fiducial points on faces: chin
(17), eyebrows (10), nose stem (4), below nose (5), eyes (12), and lips (18). Unfortu-
nately, these locations (which are also common for other detectors) are not sufficient for
our purposes because they lack points above the eyebrows and on the ears. Since our sys-
tem manipulates perspective, such points are crucial to model the effects on apparent head
shape.

Rather than invent a new fiducial detector, which we leave for future work, we use an
existing detector [88]], and manually annotate three extra points on top of the head and ears.

We chose a small number of points to facilitate quick annotation (less than five seconds).

4.2.3 Fitting

Given an input image and the 69 fiducial point locations (Section4.2.2) we would like to fit

a head model to the image. Since all models in our dataset share the same vertex ordering,

56

we know the location of the corresponding fiducial points on the 3D models. Armed with
Equation and Equation the task is now to find the best parameters 3, v, K, R,t (50
+ 25 + 3 + 3 + 3 = 84 in total) such that the Euclidean distance between the fiducial points
and the projection of the 3D landmarks is minimized.

Many fitting strategies are possible. We experimented with several and discuss them
before describing our proposed approach. A naive approach is to treat the problem as one
large non-linear least square optimization. However, we found this approach gets stuck
in local minima. Using coordinate descent, as described in Algorithm [I| obtained lower
global error. Other works [[108, [106, 24]] also used coordinate descent. However our opti-
mization problem is much harder due to the inherent non-linearity of the camera projection
model (Algorithm [T Line[6)), which introduces ambiguity between the camera distance, fo-
cal length and the expression and identity parameters. We also tried adapting this naive
approach by using even more fiducial points, and achieved sub-par results. Our experience
suggests that merely adding more points does not completely solve the problem.

We also experimented with the approach of Cao et al. [23} 22] for focal length estima-
tion. It assumes that the fitting error taken as a function of focal length is convex. We tested
this convexity assumption in the context of our global optimization, by repeating their ex-
periments using un-cropped images from the Caltech Multi-Distance Portraits (CMDP)
Dataset [21]], and found that convexity does not hold when calculated using a single image.
Moreover, the global optimum of the focal length was off by an average of 35% and up to
89% from the EXIF value. In contrast, Cao et al. were able to obtain errors below 2% using
multiple frames.

The aforementioned experiments led to a more deliberate design of the initialization
and of the gradient descent order (e.g. adding Line 2] as a precursor to the optimization
loop). All the results shown in this paper use a total of 3 iterations. The following sections
explain the different subparts of the optimization. Figure contains an overview of the

fitting procedure.

57

Algorithm 1 Fit model to image

. Initialize camera, identity and expression parameters (§4.2.3))
. Solve rotation and translation (§4.2.3])
: for ¢ in 1..num_iterations do

1

2

3

4: Solve identity (§4.2.3)

5. Solve expression (§4.2.3))

6: Solve camera (§4.2.3)

7: Update 3D landmark location (§4.2.3))
8: end for

Initialization

We extract the focal length fr from the EXIF data of the image as an initial guess. We
allow this value to change during optimization, to account for EXIF inaccuracies and the
uncertainty of the exact location of the focal plane. We also use the distance ¢. between
camera and subject if it is known (e.g. in the dataset of Burgos-Artizzu et al. [21]). We

initialize our camera parameters to be:

fo 00 0
KO =10 fE O ;o= 10| 1= Ty =T, = (43)
0 0 1 te

Here, r,, r, and r, are the x, y and z rotation, respectively. If distance ¢. is unknown we use
a default value of 1m. Initializing (3, and 7, to the average of all identity and expression
vectors in our dataset, respectively, we solve for initial parameters (3, v, I, R,t using an
interior-reflective Newton method [30], minimizing the Euclidean distance between 2D
fiducial points and the 2D projections of corresponding 3D landmarks. Specifically, let
L = {l;} be the 2D fiducial locations (Section and H = {h;} be the corresponding

3D head vertices projected to the image plane by Equation[4.2] Our objective is then:

N
. 2
573}%%%7t E_l 1i — hall; 4.4)

58

where N is the number of fiducial points (69 throughout this paper).

Parameter Update

As introduced in Algorithm [T} we solve for rotation R and translation ¢ once. Next hold-
ing these parameters fixed, we repeatedly solve for identity (3, expression 7, and cam-
era parameters K, R, t. As with initialization (Section [4.2.3)), these optimizations use the
interior-reflective Newton method to minimize Equation We find it critical to solve
first for rotation and translation only: Solving first for expression or identity results in a
distorted face that overcompensates for bad pose. Solving first for the full camera matrix

occasionally results in erroneous focal length.

3D Landmark Update

Some landmark locations are expected to remain fixed on the 3D model, regardless of view
angle. For example, the corner of the eye should be the same vertex for any pose. How-
ever, other landmarks are pose-dependent. Specifically, the chin and the top of the head are
entangled with pose. Of course, the chin doesn’t actually change location; rather our fidu-
cial detector detects contour points along the chin, and these contours are view-dependent.
Thus, after initial calculation of a face shape and location, we need to recalculate the loca-
tion of these “soft” landmarks. This step needs to be reasonably efficient because it is iter-
ated many times in Algorithm[I] We follow an approach similar to that of Yang et al. [108],
with two modifications: First, we add the top of the head as a movable landmark. Second,
their work used a face model, rather than a full head model. Because the projected shape is
nearly convex, they described an approach that iteratively projects towards the convex hull
in 2D to find the contour. Since we have a full head (including protruding ears) our pro-
jected shape is far from convex. We address this problem by a one time preprocessing step
in which we find a restricted set of “valid” chin and head points (omitting ears and neck,

for example) and then restrict the landmark update to consider only these valid points.

59

4.2.4 Changing Distance and Pose

Given a good fit between the input image and the head model, we can now manipulate
the model. We move the virtual camera towards or away from the subject by changing
the translation ¢. To rotate the head we adjust both translation ¢ and rotation R, since
translation is applied before rotation. Rotation is achieved by translation in a diagonal
direction (relative to the line between camera and subject), followed by a rotation to place
the head back in the visible frustum. These modifications result in a new projected head

shape, which will guide the warp described next.

4.2.5 Warping

After manipulating distance or pose we now have two sets of points: First, the original 3D
face vertices that match the input image, and second, the manipulated vertices representing
a change of distance, pose, expression or any other 3D manipulation. Given these two
sets, we find a 2D image warp to produce the output image. However, some points are
“occluded” for the purpose of the warp. For example, our head model includes back-
facing areas, but such areas move in the direction opposite from the front-facing areas when
changing camera distance. Therefore we remove occluded vertices before calculating the
warp.

Given a sparse set of before and after points, we need to extrapolate the vector field to
the entire image. We use triangulation-based cubic interpolation to get an initial estimate
of the dense vector field. Although correct in 3D, strong discontinuities in the vector field
may cause artifacts in the output. Consider, for example, an extreme rotation of the head.
Cheek points that had the same x and y values (but different z values) need to be stretched
to different x locations, causing a shear. Note that the vector field in this case is correct
in 3D, but cannot be approximated well by a 2D warp. Therefore, we smooth out large
gradients in the warp field, as follows: We first replace all values outside the face region

with a smooth interpolation of the valid values, by computing the discrete Laplacian and

60

solving a Neumann boundary condition. We next blur the vector field by convolving with

a disk with radius zio of the photo diagonal. Finally with the smooth warp field we use
reverse mapping to calculate the origin of each pixel in the output image. We use linear
interpolation since it is simple, fast, and produces satisfactory results. Figure 4.4 shows a

breakdown of these steps.

4.3 Evaluation

In this section we evaluate our method. Section demonstrates the importance of
different parts of the pipeline by showing results with various stages disabled. Sec-
tion and Section compare our results against ground truth photos of synthetic
and real heads, respectively, taken at known distances. Section {.3.4] discusses the impact

of our warp on the background of the portrait.

4.3.1 Pipeline Evaluation

For a face with neutral expression and common proportions, a single average head model
might suffice (Section4.3.3). However, when the input image is expressive, it is important
to use the full face model. Figure {.5|shows results using an average face model, instead of
optimizing a specific identity and expression to our image. Clearly a single face cannot be
a catch-all solution, resulting in artifacts due to bad alignment.

Fiducial point based matching from a 3D head to a 2D image is sensitive to the choice of
landmarks. Many existing works use 66 standard points spread across the chin, eyebrows,
nose, eyes and lips [[108, 106, 24]. This choice is motivated mostly by ease of recognition.
When fitting a face model and manipulating only the face internals, such landmarks might
suffice. However, we found that full head manipulation, especially one where the camera

location is changed, requires more fiducial points. Adding three points (top-of-head and

61

ears) leads to significantly better results for our scenario. Figure §.6] shows failure cases
when these additional landmarks are not used.

Our warping procedure (Section uses well established methods (such as trian-
gulation and sampling). However, we use a specific procedure with added steps to reduce
potential artifacts. Figure 4.7|compares our warping results to results obtained by standard

image warping techniques.

4.3.2 Synthetic Heads

Numerically evaluating our method is hard. Photos of real people taken from different
distances at different times have slight variations in illumination, expression and pose, thus
the “ground truth” image does not match exactly a warped version of the input. To tackle
this issue we perform evaluation on two types of data: mannequin heads and real people.
The mannequin heads provide a controlled environment, for which we can get accurate
ground truth.

Figure [4.8 shows several results with mannequin heads. Our input image is taken from
a distance of 90cm. We warp it to simulate a range of distances between 120cm and 480cm.
We compare each warped result to the ground truth by calculating the absolute difference of
the gray-scale pixel values (black indicates equality; white indicates the largest difference.)
Note that the method manages to simulate both the head shape and the location of internal

features such as eyes and ears.

4.3.3 Real Heads

To obtain a similar evaluation of real-world cases, we use the CMDP dataset [21]], which
contains portraits of people captured from a few controlled distances. We evaluate the
process of changing the camera distance from an image shot at 60cm to 480cm and then
compare to a real image captured at that distance. This is the harder direction of manipula-

tion, as features in the close-up image (e.g. ears) are not always visible.

62

However, a naive pixel difference will not suffice here, due to slight pose, expression
and illumination changes in the ground truth images. Therefore to compare two images

WwE:

1. Register the images using a rigid transform, to avoid penalizing simple rotations or

translations.

2. Use Large Displacement Optical Flow [18] to calculate optical flow between the

images.
3. Mask out the background regions, since we are only interested in the head warp.

4. Calculate the median optical flow magnitude in the head region. To normalize, we

multiply by 100 / image diagonal.

Figure4.9\numerically compares our method to the following four alternatives: 1) Com-
pute an optimal radial distortion correction given known ground truth (giving maximal ad-
vantage to this method to test its potential); 2) Use only the fiducials and the vertices of
the face to drive the warp, simulating the fitting done by methods like [108} 24] and many
others; 3) Fit an average head instead of the multi-linear deformable model and warp using
our method, representing methods like [S5} 157, 45] that use a single model; We use a mean
full head model, averaged from the dataset in [24] as apposed to just a face model as was
done in previous methods, to explore a full potential of this approach for our task. 4) Fit
our full model. Figure 4.10[shows representative results.

Figure 1.5 and Figure [4.13] show our results for input images with a non-neutral pose
and expression. We compare against a static model, showing that a deformable model is

important.

4.3.4 Background Preservation

Most of the examples shown so far had a rather uniform background that might hide warp

artifacts if they exist. While some works in the area are limited to these types of inputs, we

63

would like to have a system that works in the wild. Moreover, we cannot expect the user to
mask the area around the head, since we aim for a fully automatic method.

Thus, we require minimal distortion in the background, which we achieve by using a
2D warping approach (Section [4.2.5) rather than a 3D texture mapping approach requiring
perfect head segmentation. In Figure 4.12| we show several examples of our warp result on

noisy backgrounds.

4.3.5 Runtime

Our method is implemented in Matlab, and can be further optimized. Typical runtime is
around 5 seconds to fit the model to the input image, and less than 1 second for warp
field generation and warp calculation. To support real-time interactivity, we also created
a WebGL viewer that can adjust warps on the fly (Section #.4.3). We pre-calculate warp
fields for a few predefined distances or other parameters such as pitch and yaw. The pre-
calculation takes 3 seconds for 4 samples of the distance parameter. After pre-computing
these warp fields, the interpolated warp is rendered in the web browser in real time (more

than 60 FPS).

4.4 Applications

Our primary application is to adjust camera distances (Section #.4.1). We also discuss

other applications including stereoscopic portraits (Section [4.4.2) and pose adjustment

(Section4.4.3).

4.4.1 Distance Correction

Our main motivating application is to adjust camera distance in portraits. Figure[d.11|shows
distance manipulation results for seven subjects from the CMDP dataset. In each case the

60cm portrait was warped to match the 480cm one, and vice versa, so they can be compared

64

to ground truth. Note that the changes are subtle but noticeable. Moreover, these changes
are more prominent when the subject is known (yourself, family or a friend). We refer
the reader to the accompanying video as well as the interactive viewer in the supplemental
materials for more examples.

All the above results are from a controlled dataset, for comparison to ground truth.
However, our system also works well on images “in the wild.” Figure @.12] shows dis-
tance manipulation on real images tagged as #selfie on Twitter and Flickr. Our system
works across a variety of expressions and poses despite cluttered backgrounds and com-
plex lighting. Figure [4.13|and Figure {.5] further illustrate the robustness of our method to

exaggerated expressions and poses. More examples are in the supplementary materials.

4.4.2 Headshot Stereoscopy

We can create stereoscopic images using our framework. Given the distance from the
subject and the average human interpupillary distance, we can modify the viewpoint to
obtain two new images — one for each eye. Those images can then be displayed on devices
such as VR headsets. Figure [4.14] shows 3D anaglyphs automatically created from 2D
photos using this approach. These can be viewed using a standard pair of red/cyan glasses

(red eye left).

4.4.3 Other Applications

Our 3D fitting pipeline is based on the multi-linear morphable model framework. As such,
we can replicate some of the face manipulation tasks shown in previous work using similar
models [102} 108} 24]. These include pose and expression manipulation, and animating a
moving face from a still image (see Figure 1f and the accompanying video).

Our WebGL based user interface supports interactive photo manipulation. The user is
presented with the image and sliders to manipulate camera distance and head pose (Fig-

ure [4.15). We calculate warp fields for predefined parameter values (4 distances, 5 pitch

65

values, 5 yaw values). When the user selects a specific parameter combination, we use
trilinear interpolation to generate a warp field. Then, we use the warp field to create the
output via reverse mapping. Output images are rendered at real-time rates, allowing users

to adjust parameters to their liking.

4.5 Limitations and Future Work

We present a unified framework for altering the camera and subject pose in a portrait photo.
This method can be used to improve selfies, make a subject look more approachable or
adapt the camera distance to match a different shot for compositing. We display results for
various scenarios and compare with ground truth data. Our editing operations remain in
the realm of “plausible” — they do not create new people, rather they show the same people
under different viewing conditions. In that sense, they are the post-processing equivalent of
a portrait photographer making a different decision about the composition. Our framework
also supports creating stereoscopic views from portraits and video, as well as making video
with apparent camera and subject motion from a still portrait. More results, video and
demos may be seen on our project page http://faces.cs.princeton.edu/.

Our approach has several weaknesses that suggest opportunities for future work. First, the
pipeline relies on a good fit between input and model, and if the fit fails, the results will be dis-
torted. While our optimization has proved robust in many cases, occasional failures remain. Future
approaches might build on larger, more varied head shape datasets, or rely on 2.5D sensor data
emerging in new camera rigs. Second, we only warp the data that exists in the original image. This
produces convincing results in many cases, but will not handle significant disocclusions such as can
arise from significant head rotations. One way to address this might be by filling missing regions
via, e.g., texture synthesis with a strong face prior [45]. Third, the way we currently treat hair is
by a smooth extrapolation of the warp field outside of the head region. This is often insufficient,
and could be improved with a specialized hair model. Fourth, our method does not handle eye gaze
correction and extreme expression change which may be desired in some scenarios. One could

experiment with existing techniques for editing gaze [41] and expression [108]]. Finally, while the

66

accompanying video shows a couple speculative applications for video (stereoscopic video and a

“moving portrait”) a proper investigation of such applications remains for future work.

67

(a) initial field (b) with Laplace operator

(c) smoothed (d) with image

Figure 4.4: Generating the dense warp field. (a) Initial dense field, with discontinuities
in background and around face. (b) Improved background via discrete Laplace operator.
(c) Smoothed using an averaging filter. (d) Overlay of the final warp field and input image.

68

Ly

Input Fit (single) Fit (full) Output (single) Output (full)

Figure 4.5: Using a single head model vs. our full model that allows expression and identity
variation. Dot colors as in Figure 3. The single model yields a bad fit, especially near the
smile, thus resulting in an unnaturally narrow chin.

= - :,: ESN

Fit (66 fids) Fit (69 fids)

Figure 4.6: Using the standard 66 fiducial points vs. adding 3 points for top-of-ear and
top-of-head. Dot colors as in Figure 3. Fitting to 66 points produces inaccurate alignment
near the ears and the top of the head, thus resulting in unnatural proportions and skew.

Figure 4.7: Warp comparison. L-to-R: PiecewiseLinearTransformation2D (Matlab), Local-
WeightedMeanTransformation2D (Matlab), our result without smoothing, our result. Input

image in Figure [f.13]

69

Real (0.9m)

Real 0.9 v. 1.2 Our result (1.2m) Our result (4.8m)

Real 0.9 v. 4.8 Real 1.2 v. Ours 1.2 Real 4.8 v. Ours 4.8

Figure 4.8: Ground truth evaluation. We use a mannequin to make sure no pose or expres-
sion changes occur in the ground truth images. Our results closely match the ground truth,
both in overall head shape and the location of internal face features.

70

T
; I 1st ||
nput I 2nd |
I 3rd
radial [4th
[15th
face-verts |
mean-head
ours
|

0 5 10 15 20 25 30 35 40 45

Figure 4.9: Score comparison with the 45 images from CMDP dataset that have EXIF data.
We warp images taken from 60cm to appear like 480cm away, comparing to ground-truth
photos from that distance. Energies are shown for: (1) input images, (2) radial distortion,
(3) warping with a face only (4) warping using an average head, and (5) our full model.
Top: median values of our energy function, where lower is better (Section#.3.3). Boxes are
25th to 75th percentile and red line is median of medians. Bottom: we rank each method
vs. all others, counting how often a method had each rank. Our method outperforms all
others.

71

+input ground truth—

radial face only mean head ours

Figure 4.10: Comparing methods. Top: input and ground truth at target distance. Middle
compares alternate approaches to ours: optimal radial distortion, fiducials on face only,
mean head model, and ours. Bottom: visualizing error from ground truth.

72

18l

Figure 4.11: Fixing/generating selfies. Legend in upper—left corner shows arrangement
of each quadruplet. Input ground truth “near” photos were taken at 60cm, whereas “far”
photos were taken from 480cm (CMDP Dataset [21]]). Synthetic images were warped from
near to far and vice versa, and are arranged and color matched for ease of comparison.
When evaluating, compare the head shape and the location of internal face features. These
results are selected from a larger set available in supplemental materials.

73

Figure 4.12: In-the-wild selfie correction. We use Twitter and Flickr images tagged as
#tselfie. Left: original, right: our result. Results shown for various head shapes. Back-
ground remains largely undistorted. (©Flickr users Justin Dolske, Tony Alter, Omerlr, and
Christine Warner Hawks.

74

Figure 4.13: Manipulating distances for expressive faces. Each pair contains: original
(60cm, left image), our output (480cm, right image).

75

Figure 4.14: 3D anaglyphs created from a single image. To view, wear red-cyan 3D glasses
and zoom the image to fill your screen.

76

Figure 4.15: Interactive editing, in which sliders control the resulting warp field. (See video
and demo on the project page.)

7

Chapter 5

Conclusion

Photos have become ubiquitous and a natural part of everyday life. Photography and image edit-
ing is not practiced in ivory towers, it is a form of self expression and is universally accessible in
the age of camera equipped smartphones. Thus our goal is timely: to democratize image editing
by empowering novice users to improve their photos with sophistication that matches that of pro-
fessionals, coupled with simple interfaces. In this thesis we identified three major directions of
research that can achieve the elusive goal of combining sophistication and simplicity.

We provide an example from each research direction, and yet there remain many more to ex-
plore. Single-click smart selection is a powerful mask selection paradigm, and the current al-
gorithm can be further improved to make it more robust for a broader range of imagery. Also,
runtime improvements that will make the algorithm real-time are required for real-world usage.
While single-click interaction is minimal, there are other novice friendly selection mechanisms. In
one extreme form, a user could use voice commands such as “select the yellow shirt” to perform a
zero-click, voice based selection.

In the realm of distractor removal there are many pending improvements. For example, we
would like to add personalization to the system, allowing the removal of distractors according to
the taste and aesthetics of a specific user. Removal of distracting photo elements was presented as
an example of algorithms with “high-level” goals. Many such algorithms were, are, and should
be further created. One only needs to look at online Photoshop tutorials for inspiration. Many

contain high-level goals such as “balance lighting perfectly when compositing elements”, “how to

78

swap heads in Photoshop” or “design a highbrow horror-movie poster”. These tasks typically take
between a few minutes to an hour or more to complete, and almost all of them can, with effort, be
turned into goal-specific algorithm.

We presented heads as one example of an object class which is important enough to warrant
domain specific algorithms. More such classes exist, and tackling a narrower domain allows the
creation of more powerful tool. Specific algorithms should be created for people, furniture, vehicles,
landscapes, cityscapes, and for any other element which is common in photos, either as a physical
element (e.g. cats) or a meta-element (e.g. beach). As an example, clothes are a common element
in photos, thus incorporating domain-specific knowledge to model the range of possible wardrobe
items could allow for better segmentation, understanding and editing of clothes. Another example
is building facades, which have unique properties such as repeating patterns and large flat surfaces
that can be leveraged to create powerful algorithms [[73]]. Domain specific algorithms extend beyond
image editing, and can improve tasks which are unique to the domain. For example, better image
facade algorithms will improve automatic map annotation.

This thesis narrows the gap between professional and novice photo editors. We envision a future
where the two sets of tools almost converge, once the novice-centric tools are powerful enough to

achieve professional grade results, via a simpler and often faster interaction.

79

Appendix A

Code Snippets

A.1 Torch Implementation

We present the full neural network specification used in Chapter [2] It closely resembles the Open-
Face [3]] implementation of FaceNet [89], with a few size changes to accommodate our smaller

32x32 patches.

local net = nn.Sequential ()
net:add(nn. SpatialConvolutionMM (3, 64, 7, 7, 2, 2, 3, 3))
net:add(nn. SpatialBatchNormalization (64))
net:add(nn.ReLU())
net:add(nn. SpatialMaxPooling (3, 3, 1, 1, 1, 1))
net:add(nn.SpatialCrossMapLRN (5, 0.0001, 0.75))
net:add(nn. SpatialConvolutionMM (64, 64, 1, 1))
net:add(nn. SpatialBatchNormalization (64))
net:add(nn.ReLU())
net:add(nn. SpatialConvolutionMM (64, 192, 3, 3, 1, I, 1))
net:add(nn. SpatialBatchNormalization (192))
net:add(nn.ReLU())
net:add(nn. SpatialCrossMapLRN (5, 0.0001, 0.75))
net:add(nn. SpatialMaxPooling (3, 3, 1, 1, 1, 1))
net:add(nn. Inception{

inputSize = 192,

kernelSize = {3, 5},

kernelStride = {1, 1},

outputSize = {128, 32},

reduceSize = {96, 16, 32, 64},

pool = nn.SpatialMaxPooling(3, 3, 1, 1, 1, 1),

batchNorm = true
b
net:add(nn. Inception{

inputSize = 256,

kernelSize = {3, 5},

80

kernelStride = {1, 1},
outputSize = {128, 64},
reduceSize = {96, 32, 64, 64},
pool = nn.SpatialLPPooling (256, 2,
batchNorm = true
b
net:add(nn. Inception{
inputSize = 320,
kernelSize = {3, 5},
kernelStride = {2, 2},
outputSize = {256, 64},
reduceSize = {128, 32, nil, nil},
pool = nn.SpatialMaxPooling (3, 3,
batchNorm = true
b
net:add(nn.Inception{
inputSize = 640,
kernelSize = {3, 5},
kernelStride = {1, 1},
outputSize = {192, 64},
reduceSize = {96, 32, 128, 256},
pool = nn.SpatialLPPooling (640, 2,
batchNorm = true
b
net:add(nn.Inception{
inputSize = 640,
kernelSize = {3, 5},
kernelStride = {2, 2},
outputSize = {256, 128},
reduceSize = {160, 64, nil, nil},
pool = nn.SpatialMaxPooling (3, 3,
batchNorm = true
b
net:add(nn. Inception{
inputSize = 1024,
kernelSize = {3},
kernelStride = {1},
outputSize = {384},

3,

2,

3,

2,

reduceSize = {96, 96, 256},

pool = nn. SpatialLPPooling (960,

batchNorm = true

b

net:add(nn. Inception{
inputSize = 736,
kernelSize = {3},
kernelStride = {1},
outputSize = {384},

reduceSize = {96, 96, 256},

2,

3,

2,

pool = nn. SpatialMaxPooling (3,

batchNorm = true

net:add(nn. SpatialAveragePooling (3,
net:add(nn.View(736))
net:add(nn.Linear (736, opt.embSize))

net:add(nn.Normalize (2))

3,

2,

1,

L,

2,

3,

2))

D,

3,

L,

81

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

[9]

[11]

Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurélien Lucchi, Pascal Fua, and Sabine
Siisstrunk. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans.
Pattern Anal. Mach. Intell., 34(11):2274-2282, 2012.

Ansel Adams, Robert Baker, and Alexandre Roberto de Carvalho. The camera. Little, Brown
Boston, 1980.

Hani Alers, Hantao Liu, Judith Redi, and Ingrid Heynderickx. Studying the effect of opti-
mizing the image quality in saliency regions at the expense of background content. In Proc.
SPIE, volume 7529, 2010.

Oleg Alexander, Mike Rogers, William Lambeth, Matt Chiang, and Paul Debevec. The
digital Emily project: Photoreal facial modeling and animation. In ACM SIGGRAPH 2009
Courses, 2009.

Brandon Amos, Bartosz Ludwiczuk, and Mahadev Satyanarayanan. Openface: A general-
purpose face recognition library with mobile applications. Technical report, CMU-CS-16-
118, CMU School of Computer Science, 2016.

P. Arbeldez, J. Pont-Tuset, J. Barron, F. Marques, and J. Malik. Multiscale combinatorial
grouping. In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014.

Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour detection
and hierarchical image segmentation. [EEE Trans. Pattern Anal. Mach. Intell., 33(5):898—
916, May 2011.

Shai Avidan and Ariel Shamir. Seam carving for content-aware image resizing. ACM Trans.
Graph., 26(3), July 2007.

Shai Avidan and Ariel Shamir. Seam carving for content-aware image resizing. In ACM
Trans. on Graphics (Proc. SIGGRAPH), New York, NY, USA, 2007. ACM.

Shai Bagon, Oren Boiman, and Michal Irani. What is a good image segment? a unified
approach to segment extraction. In European Conference on Computer Vision, pages 30—44.
Springer Berlin Heidelberg, 2008.

Xue Bai and Guillermo Sapiro. Geodesic matting: A framework for fast interactive image
and video segmentation and matting. International Journal of Computer Vision, 82(2):113—
132, 2009.

Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman. Patchmatch: A
randomized correspondence algorithm for structural image editing. ACM Trans. Graph.,
28(3):24:1-24:11, July 2009.

82

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

Hubert C Birnbaum. Existing Light Photography (The Kodak workshop series). Thorsons,
1984.

Volker Blanz and Thomas Vetter. A morphable model for the synthesis of 3d faces. In Pro-
ceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH 99, pages 187-194, 1999.

Jeremy S. De Bonet and Paul A. Viola. Texture recognition using a non-parametric multi-
scale statistical model. In 1998 Conference on Computer Vision and Pattern Recognition
(CVPR ’98), June 23-25, 1998, Santa Barbara, CA, USA, pages 641-647, 1998.

Derek Bradley, Wolfgang Heidrich, Tiberiu Popa, and Alla Sheffer. High resolution passive
facial performance capture. ACM Trans. Graph., 29(4):41:1-41:10, July 2010.

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.

Thomas Brox and Jitendra Malik. Large displacement optical flow: Descriptor matching in
variational motion estimation. IEEE Trans. on Pattern Analysis and Machine Intelligence
(PAMI), 33(3):500-513, March 2011.

Ronnie Bryan, Pietro Perona, and Ralph Adolphs. Perspective distortion from interpersonal
distance is an implicit visual cue for social judgments of faces. PLoS ONE, 7(9), 09 2012.

Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. A non-local algorithm for image
denoising. In Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’05) - Volume 02, CVPR ’05, pages 60-65, Washington, DC, USA, 2005.
IEEE Computer Society.

Xavier P Burgos-Artizzu, Matteo Ruggero Ronchi, and Pietro Perona. Distance estimation
of an unknown person from a portrait. In European Conference on Computer Vision (ECCV),
pages 313-327. Springer, 2014.

Chen Cao, Qiming Hou, and Kun Zhou. Displaced dynamic expression regression for real-
time facial tracking and animation. ACM Trans. Graph., 33(4):43:1-43:10, July 2014.

Chen Cao, Yanlin Weng, Stephen Lin, and Kun Zhou. 3d shape regression for real-time facial
animation. ACM Trans. Graph., 32(4):41:1-41:10, July 2013.

Chen Cao, Yanlin Weng, Shun Zhou, Yiying Tong, and Kun Zhou. FaceWarehouse: A 3d
facial expression database for visual computing. [EEE Transactions on Visualization and
Computer Graphics, 20(3):413-425, 2014.

Henri Cartier-Bresson. The Mind’s Eye: Writings on Photography and Photographers. Aper-
ture, 2005.

Huiwen Chang, Ohad Fried, Yiming Liu, Stephen DiVerdi, and Adam Finkelstein. Palette-
based photo recoloring. ACM Trans. Graph. (Proc. SSIGGRAPH), 34(4):139:1-139:11, July
2015.

Kai-Yueh Chang, Tyng-Luh Liu, Hwann-Tzong Chen, and Shang-Hong Lai. Fusing generic
objectness and visual saliency for salient object detection. In International Conf. on Com-
puter Vision (ICCV), 2011.

83

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Ming-Ming Cheng, Guo-Xin Zhang, N.J. Mitra, Xiaolei Huang, and Shi-Min Hu. Global
contrast based salient region detection. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 409-416, June 2011.

Eastman Kodak Co. The Joy Of Photography. Da Capo Press, 1991.

Thomas F. Coleman and Yuying Li. An interior trust region approach for nonlinear mini-
mization subject to bounds. SIAM Journal on Optimization, 6(2):418-445, 1996.

Emily A. Cooper, Elise A. Piazza, and Martin S. Banks. The perceptual basis of common
photographic practice. Journal of Vision, 12(5):8, 2012.

Douglas DeCarlo, Dimitris Metaxas, and Matthew Stone. An anthropometric face model
using variational techniques. In Proceedings of the 25th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH 98, pages 67-74, 1998.

Piotr Dolldr and C. Lawrence Zitnick. Structured forests for fast edge detection. In ICCV,
2013.

Alexei A. Efros and Thomas K. Leung. Texture synthesis by non-parametric sampling. In
ICCV, pages 1033-1038, 1999.

David Eigen, Dilip Krishnan, and Rob Fergus. Restoring an image taken through a window
covered with dirt or rain. In International Conf. on Computer Vision (ICCV), pages 633-640,
2013.

Rong-En Fan, Pai-Hsuen Chen, and Chih-Jen Lin. Working set selection using second order
information for training support vector machines. Journal of Machine Learning Research,
6:1889—-1918, December 2005.

Zeev Farbman, Raanan Fattal, and Dani Lischinski. Diffusion maps for edge-aware image
editing. ACM Trans. Graph., 29(6):145:1-145:10, 2010.

P F Felzenszwalb, R B Girshick, D McAllester, and D Ramanan. Object Detection with
Discriminatively Trained Part Based Models. IEEE Trans. on Pattern Analysis and Machine
Intelligence (PAMI), 32(9):1627-1645, 2010.

Ohad Fried, Eli Shechtman, Dan B. Goldman, and Adam Finkelstein. Finding distractors in
images. In Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on,
pages 1703-1712, June 2015.

Ohad Fried, Eli Shechtman, Dan B. Goldman, and Adam Finkelstein. Perspective-aware
manipulation of portrait photos. ACM Trans. Graph., 35(4):128:1-128:10, July 2016.

Dominik Giger, Jean-Charles Bazin, Claudia Kuster, Tiberiu Popa, and Markus Gross. Gaze
correction with a single webcam. IEEE International Conference on Multimedia & Expo,
July 2014.

Jonathan Harel, Christof Koch, and Pietro Perona. Graph-based visual saliency. In Advances
in Neural Information Processing Systems, pages 545-552. MIT Press, 2007.

Tal Hassner. Viewing real-world faces in 3D. In International Conference on Computer
Vision (ICCV), 2013.

84

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Tal Hassner and Ronen Basri. Example based 3d reconstruction from single 2d images. In
Beyond Patches Workshop at IEEE CVPR’06, June 2006.

Tal Hassner, Shai Harel, Eran Paz, and Roee Enbar. Effective face frontalization in uncon-
strained images. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2015.

David J. Heeger and James R. Bergen. Pyramid-based texture analysis/synthesis. In Pro-
ceedings of the 22Nd Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH 95, pages 229-238, New York, NY, USA, 1995. ACM.

Xiaodi Hou and Liqing Zhang. Saliency Detection: A Spectral Residual Approach. In /IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), June 2007.

Laurent Itti and Christof Koch. A Saliency-Based Search Mechanism for Overt and Covert
Shifts of Visual Attention. Vision Research, 40:1489-1506, 2000.

Anil K. Jain and Farshid Farrokhnia. Unsupervised texture segmentation using gabor filters.
Pattern Recogn., 24(12):1167-1186, December 1991.

L. Joyeux, O. Buisson, B. Besserer, and S. Boukir. Detection and removal of line scratches
in motion picture films. In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
pages 548-553, 1999.

Tilke Judd, Krista Ehinger, Frédo Durand, and Antonio Torralba. Learning to predict where
humans look. In International Conf. on Computer Vision (ICCV), 2009.

Bela Julesz. Textons, the elements of texture perception, and their interactions. Nature,
290(5802):91-97, March 1981.

Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active contour models.
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1(4):321-331, 1988.

Yan Ke, Xiaoou Tang, and Feng Jing. The design of high-level features for photo quality
assessment. In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), volume 1,
pages 419-426, 2006.

I. Kemelmacher-Shlizerman and R. Basri. 3d face reconstruction from a single image using
a single reference face shape. IEEE Trans. on Pattern Analysis and Machine Intelligence
(PAMI), 33(2):394-405, Feb 2011.

Ira Kemelmacher-Shlizerman and Steven M. Seitz. Face reconstruction in the wild. In Inter-
national Conference on Computer Vision (ICCV), 2011.

Ira Kemelmacher-Shlizerman, Eli Shechtman, Rahul Garg, and Steven M. Seitz. Exploring
photobios. ACM Trans. Graph., 30(4):61:1-61:10, July 2011.

A. C. Kokaram. On missing data treatment for degraded video and film archives: A survey
and a new bayesian approach. IEEE Trans. on Image Processing, 13(3):397-415, March
2004.

Johannes Kopf, Matt Uyttendaele, Oliver Deussen, and Michael F Cohen. Capturing and
viewing gigapixel images. In aCm Transactions on Graphics (TOG), volume 26, page 93.
ACM, 2007.

85

[60]

[61]

[62]

[63]

[64]
[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Anat Levin, Rob Fergus, Frédo Durand, and William T Freeman. Image and depth from a
conventional camera with a coded aperture. ACM transactions on graphics (TOG), 26(3):70,
2007.

Anat Levin, Alex Rav-Acha, and Dani Lischinski. Spectral matting. IEEE Trans. Pattern
Anal. Mach. Intell., 30(10):1699-1712, 2008.

H Liu and I Heynderickx. Studying the added value of visual attention in objective image
quality metrics based on eye movement data. In IEEE International Conf. on Image Process-
ing (ICIP), November 2009.

G.A. Lloyd and S.J. Sasson. Electronic still camera, December 26 1978. US Patent
4,131,919.

Rastislav Lukac. Computational photography.: methods and applications. CRC Press, 2010.

Wei Luo, Xiaogang Wang, and Xiaoou Tang. Content-based photo quality assessment. In
International Conf. on Computer Vision (ICCV), Nov 2011.

Rotem Mairon and Ohad Ben-Shahar. A Closer Look at Context: From Coxels to the Con-

textual Emergence of Object Saliency, pages 708—724. Springer International Publishing,
Cham, 2014.

L. Marchesotti, C. Cifarelli, and G. Csurka. A framework for visual saliency detection with
applications to image thumbnailing. In International Conf. on Computer Vision (ICCV),
pages 2232-2239, 20009.

Ran Margolin, Ayellet Tal, and Lihi Zelnik-Manor. What Makes a Patch Distinct? [EEE
Conf. on Computer Vision and Pattern Recognition (CVPR), pages 1139-1146, June 2013.

David R. Martin, Charless Fowlkes, and Jitendra Malik. Learning to detect natural image
boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach.
Intell., 26(5):530-549, 2004.

Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-based rendering sys-
tem. In Proceedings of the 22nd annual conference on Computer graphics and interactive
techniques, pages 39-46. ACM, 1995.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous
space word representations. In Human Language Technologies: Conference of the North
American Chapter of the Association of Computational Linguistics, Proceedings, June 9-14,
2013, Westin Peachtree Plaza Hotel, Atlanta, Georgia, USA, pages 746-751, 2013.

Naila Murray, Luca Marchesotti, and Florent Perronnin. Ava: A large-scale database for aes-
thetic visual analysis. In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2012. (In press).

P. Musialski, P. Wonka, D. G. Aliaga, M. Wimmer, L. van Gool, and W. Purgathofer. A
survey of urban reconstruction. Computer Graphics Forum, 32(6):146-177, 2013.

Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. Indoor segmentation and
support inference from rgbd images. In ECCV, 2012.

86

[75]

[76]

[77]

[78]

[79]

[80]

[81]
[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

L Neumann and J Matas. Real-time scene text localization and recognition. /IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2012.

Ren Ng, Marc Levoy, Mathieu Brédif, Gene Duval, Mark Horowitz, and Pat Hanrahan. Light
field photography with a hand-held plenoptic camera. Computer Science Technical Report
CSTR, 2(11):1-11, 2005.

Joseph Nicéphore Niépce. View from the window at le gras. http://www.hrc.
utexas.edu/exhibitions/permanent/firstphotograph/, 1826. Accessed:
2017-03-20.

Aude Oliva and A Torralba. Modeling the shape of the scene: A holistic representation of
the spatial envelope. International journal of computer vision, 42(3):145-175, 2001.

Anton Orlov. Selecting a portrait lens with correct focal length.
Accessed 2016-01-15: http://petapixel.com/2016/01/04/
selecting—a—-portrait-lens-with—-correct-focal-length/, 2016.

N. Otsu. A threshold selection method from gray-level histograms. IEEE Transactions on
Systems, Man, and Cybernetics, 9(1):62-66, Jan 1979.

Pietro Perona. A new perspective on portraiture. Journal of Vision, 7:992-992, 2007.

Pietro Perona. Far and yet close: Multiple viewpoints for the perfect portrait. Art & Percep-
tion, 1(1-2):105-120, 2013.

T. Randen and J. H. Husoy. Filtering for texture classification: a comparative study. /EEE
Transactions on Pattern Analysis and Machine Intelligence, 21(4):291-310, Apr 1999.

Ramesh Raskar and Jack Tumblin. Computational photography: mastering new techniques
for lenses, lighting, and sensors. AK Peters, Ltd., 2009.

Erik Reinhard, Wolfgang Heidrich, Paul Debevec, Sumanta Pattanaik, Greg Ward, and Karol
Myszkowski. High dynamic range imaging: acquisition, display, and image-based lighting.
Morgan Kaufmann, 2010.

Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. “grabcut”: interactive foreground
extraction using iterated graph cuts. ACM Trans. Graph., 23(3):309-314, 2004.

Michael Rubinstein, Diego Gutierrez, Olga Sorkine, and Ariel Shamir. A comparative study
of image retargeting. ACM Transactions on Graphics, 29(6):160:1-160:10, December 2010.

Jason M Saragih, Simon Lucey, and Jeffrey Cohn. Face alignment through subspace con-

strained mean-shifts. In International Conference on Computer Vision (ICCV), September
2009.

F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recogni-
tion and clustering. In 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 815-823, June 2015.

E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. Moreno-Noguer. Discrimi-
native learning of deep convolutional feature point descriptors. In 2015 IEEE International
Conference on Computer Vision (ICCV), pages 118-126, Dec 2015.

87

http://www.hrc.utexas.edu/exhibitions/permanent/firstphotograph/
http://www.hrc.utexas.edu/exhibitions/permanent/firstphotograph/
http://petapixel.com/2016/01/04/selecting-a-portrait-lens-with-correct-focal-length/
http://petapixel.com/2016/01/04/selecting-a-portrait-lens-with-correct-focal-length/

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

EP Simoncelli and WT Freeman. The Steerable Pyramid: A Flexible Architecture For Multi-
Scale Derivative Computation. IEEE International Conf. on Image Processing (ICIP), 1995.

Sara L. Su, Frédo Durand, and Maneesh Agrawala. De-emphasis of distracting image regions
using texture power maps. In Applied Perception in Graphics & Visualization, pages 164—
164, New York, NY, USA, 2005. ACM.

Bongwon Suh, Haibin Ling, Benjamin B. Bederson, and David W. Jacobs. Automatic thumb-
nail cropping and its effectiveness. In Proceedings of the 16th Annual ACM Symposium on
User Interface Software and Technology, UIST *03, pages 95-104, New York, NY, USA,
2003. ACM.

Xiaoou Tang, Wei Luo, and Xiaogang Wang. Content-Based Photo Quality Assessment.
IEEE Transactions on Multimedia (TMM), 2013.

Flora Ponjou Tasse and Neil Dodgson. Shape2vec: Semantic-based descriptors for 3d shapes,
sketches and images. ACM Trans. Graph., 35(6):208:1-208:12, November 2016.

Robert Tibshirani. Regression Shrinkage and Selection Via the Lasso. Journal of the Royal
Statistical Society, Series B, 58:267-288, 1994.

Wai-Shun Tong, Chi-Keung Tang, Michael S. Brown, and Ying-Qing Xu. Example-based
cosmetic transfer. Computer Graphics and Applications, Pacific Conference on, 0:211-218,
2007.

LedyardR Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika,
31(3):279-311, 1966.

Erik Valind. Portrait Photography: From Snapshots to Great Shots. Pearson Education,
2014.

Manik Varma and Andrew Zisserman. Texture classification: Are filter banks necessary? In
2003 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2003), 16-22
June 2003, Madison, WI, USA, pages 691-698, 2003.

Paul Viola and Michael Jones. Robust Real-time Object Detection. In International Journal
of Computer Vision (IJCV), 2001.

Daniel Vlasic, Matthew Brand, Hanspeter Pfister, and Jovan Popovié. Face transfer with
multilinear models. ACM Trans. Graph., 24(3):426-433, July 2005.

Jure Zbontar and Yann LeCun. Stereo matching by training a convolutional neural network
to compare image patches. J. Mach. Learn. Res., 17(1):2287-2318, January 2016.

T. Weise, B. Leibe, and L. Van Gool. Fast 3d scanning with automatic motion compensation.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 861-868,
2007.

Jianzhou Yan, Stephen Lin, Sing Bing Kang, and Xiaoou Tang. Learning the change for
automatic image cropping. In IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), June 2013.

88

[106]

[107]

[108]

[109]

Fei Yang, Lubomir Bourdev, Eli Shechtman, Jue Wang, and Dimitri Metaxas. Facial ex-
pression editing in video using a temporally-smooth factorization. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 861-868, 2012.

Fei Yang, Eli Shechtman, Jue Wang, Lubomir Bourdev, and Dimitris Metaxas. Face morph-
ing using 3d-aware appearance optimization. In Proceedings of Graphics Interface (GI'12),
pages 93-99, 2012.

Fei Yang, Jue Wang, Eli Shechtman, Lubomir Bourdev, and Dimitri Metaxas. Expression
flow for 3d-aware face component transfer. ACM Trans. Graph., 30(4):60:1-60:10, July
2011.

C Lawrence Zitnick and Piotr Dollar. Edge Boxes: Locating Object Proposals from Edges.
In European Conf. on Computer Vision (ECCV), 2014.

89

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Texture-aware Selection Masks
	2.1 Related Work
	2.2 Patch Embedding
	2.3 Evaluation
	2.3.1 Quantitative Evaluation
	2.3.2 Single-Click Segment Selection
	2.3.3 Extensions

	2.4 Discussion

	3 Detection And Removal Of Distracting Photo Elements
	3.1 Related Work
	3.2 Datasets
	3.2.1 Mechanical Turk Dataset (MTurk)
	3.2.2 Mobile App Dataset (MApp)
	3.2.3 Data Analysis

	3.3 Distractor Prediction
	3.3.1 Segmentation
	3.3.2 Features
	3.3.3 Learning
	3.3.4 Feature Ranking

	3.4 Evaluation
	3.4.1 Inter-Dataset Validation

	3.5 Applications
	3.5.1 Distractor Removal
	3.5.2 Image Retargeting

	3.6 What's Next For Distractor Prediction?

	4 Content-specific Photo Editing
	4.1 Related Work
	4.2 Our Method
	4.2.1 Tensor Model
	4.2.2 Fiducial Detection
	4.2.3 Fitting
	4.2.4 Changing Distance and Pose
	4.2.5 Warping

	4.3 Evaluation
	4.3.1 Pipeline Evaluation
	4.3.2 Synthetic Heads
	4.3.3 Real Heads
	4.3.4 Background Preservation
	4.3.5 Runtime

	4.4 Applications
	4.4.1 Distance Correction
	4.4.2 Headshot Stereoscopy
	4.4.3 Other Applications

	4.5 Limitations and Future Work

	5 Conclusion
	A Code Snippets
	A.1 Torch Implementation

	Bibliography

