
Pacific Graphics 2017
J. Barbic and O. Sorkine-Hornung
(Guest Editors)

Volume 36 (2017), Number 7

Patch2Vec: Globally Consistent Image Patch Representation

O. Fried1 S. Avidan2 D. Cohen-Or2

1Princeton University 2Tel-Aviv University

(a) (b) (c) (d)

Figure 1: (a) Input image. (b) A 2D embedding of patches in the image using Patch2Vec. Observe how patches with similar texture are
clustered together. (c) Projecting the embedding to 3D for visualization purposes. (d) Single Click Segmentation. Given a single click (white
circle) we automatically segment the fence.

Abstract

Many image editing applications rely on the analysis of image patches. In this paper, we present a method to analyze patches
by embedding them to a vector space, in which the Euclidean distance reflects patch similarity. Inspired by Word2Vec, we term
our approach Patch2Vec. However, there is a significant difference between words and patches. Words have a fairly small and
well defined dictionary. Image patches, on the other hand, have no such dictionary and the number of different patch types is
not well defined. The problem is aggravated by the fact that each patch might contain several objects and textures. Moreover,
Patch2Vec should be universal because it must be able to map never-seen-before texture to the vector space. The mapping is
learned by analyzing the distribution of all natural patches. We use Convolutional Neural Networks (CNN) to learn Patch2Vec.
In particular, we train a CNN on labeled images with a triplet-loss objective function. The trained network encodes a given
patch to a 128D vector. Patch2Vec is evaluated visually, qualitatively, and quantitatively. We then use several variants of an
interactive single-click image segmentation algorithm to demonstrate the power of our method.

Categories and Subject Descriptors (according to ACM CCS): I.4.10 [Image Processing and Computer Vision]: Image
Representation—Multidimensional

1. Introduction

Patch representation is a central theme in the analysis and synthe-
sis of images. Consider, e.g., image segmentation. At its core, seg-
mentation requires a distance measure between different image re-
gions. Similarly, retrieving patches for hole-filling, grouping image
regions for faster computation and image based search queries are
all tasks that require a robust way to represent patches.

Patch representation is not trivial, especially due to the preva-
lence of (non-regular) texture regions. It is quite simple to segment
an image made of piece-wise constant colors, but much more chal-
lenging to do so when the image consists of textured regions.

Patches and textures can be represented in a number of differ-
ent ways. Early attempts use a filter bank response; similar texture
should have similar response. Alternatively, texture can be repre-
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sented as a histogram or a Gaussian mixture model. Nowadays it
is common to use raw pixel values as patch representation. This
non-parametric representation leads to impressive results in appli-
cations such as texture synthesis or image denoising. Since patches
often include textured regions, from here on we will use the terms
“patch” and “texture” interchangeably, explicitly acknowledging
the complexity of image patches.

The goal of the different representations is to map patches
to some vector space where it is easy to compute meaningful
distances. The distance measure between similar patches should
hopefully be small to capture our perception of texture similarity.
The representation in the cases mentioned above is fixed ahead of
time, regardless of the data. Therefore it is difficult to ensure that
the distance measure indeed captures texture similarity.

We are inspired by the work on Word2Vec that maps words with
similar meaning to vectors with small distances between them.
In our case, we wish to create an embedding space where the
Euclidean distance between patches of similar texture is small.
We term our approach Patch2Vec. However, there is a significant
difference between words and image patches. Words have a fairly
well defined dictionary. For our task, on the other hand, there is no
such dictionary and the number of different textures and objects in
photos is not well defined. Moreover, we aim to map never-seen-
before texture to the vector space.

Consider Figure 1. The image on the left depicts a woman
against a challenging background. Yet, with a single click we
are able to segment the background based on distances between
pixels in the embedding space (Figure 1(d)). This, we argue, is a
strong indication to the quality of the embedding. In addition, we
show an embedding of patches from the image to the 2D plane
(Figure 1(b)). Observe how patches of similar texture are clustered
together, regardless of texture shifts and illumination changes. In
Figure 1(c) we use PCA to project the embedding vectors on the
three largest principal components. The entire fence, that exhibits
strong texture as well as shadows, is mapped to a single pseudo-
RGB gray color, yet another indication to the power of our method.

The Patch2Vec mapping is universal. The mapping is learned by
analyzing the distribution of all natural patches in all the images
of our training set. This is in contrast to spectral methods, for
example, that typically learn an image dependent embedding -
changing an image will change the embedding. Another difference
between spectral methods and Patch2Vec is that spectral methods
are unsupervised by nature. As a result, at their core they still rely
on some distance function between the raw pixel values of two
patches. Patch2Vec, on the other hand, is defined in a supervised
setting where the goal is to map pairs of patches that are deemed
similar by humans to the same code in embedding space. This way
the Euclidean distance in the embedding space reflects a perceptual
similarity. Once we learn a universal mapping we can use it to
process multiple images simultaneously or operate on images that
change dynamically, say during editing.

We use Convolutional Neural Networks (CNN) to learn
Patch2Vec. In particular, we train a CNN on a large training set of
labeled images with a triplet-loss objective function. This objective
function takes as input three patches. Two of them from the same
object and another one from a different object. During training, the

CNN learns to map patches of the same texture to nearby points in
the Euclidean embedding space, while mapping other textures as
far away as possible.

Once trained, patches are mapped to vector representation in a
Euclidean space. Measuring perceptual similarity between patches
now amounts to measuring the Euclidean distance between their
corresponding embedded vectors. We evaluate Patch2Vec on some
variants of a single-click image segmentation application. In this
application, the user clicks on a single pixel and the application
automatically extracts the appropriate segment. We then show
that this basic functionality can be used in a multi-image single-
click segmentation, as well as a super-pixel application. These
extensions indicate the potential power of Patch2Vec.

The main contributions of this work are:

• A learning framework for image patch embedding, including a
novel training regime, and the insight that a segmentation dataset
can be used to supervise patch embedding (Sections 3 and 4).

• New single-click selection and super-pixel creation algorithms
(Section 5).

• A new mask stability measure (Section 5.1).

2. Related Work

We deal with Representation Learning, Texture, and Image Seg-
mentation. The literature on each of these topics is quite extensive.
Here we highlight only research directly relevant to our work.

Representation Learning Word2Vec [MYZ13] reignited the in-
terest in semantic embedding of words in vector spaces. It uses a
Neural Network that was trained on a large dataset with billions of
words and millions of words in the vocabulary.

Learning similarity measures between image patches has been
actively investigated in the past. For example, Žbontar and LeCun
[vL16] learn to do stereo matching by training a convolutional
neural network to compare image patches. Observe that here the
goal is to learn a similarity measure of the same 3D world under
slightly different viewing directions.

Simo-Serra et al. [SSTF∗15] learn feature point descriptors
using a Siamese network. The output of their algorithm is 128D
feature vector that can be used as a drop-in replacement for any
task involving SIFT. They are similar to us in that they too learn a
universal code for image patches. However, they focus on learning
a code that is invariant to changes in the viewpoint, whereas we
wish to learn a code that is invariant to fluctuations within a texture.

PatchNet [HZW∗13] introduces a compact and hierarchical rep-
resentation of image regions. It uses raw L*a*b* pixel values to
represent patches, and Euclidean distance between these represen-
tations; we compare against using raw pixel values in Table 1.
The goal of PatchNet is interactive library-driven image editing,
and it includes other components besides patch representation (e.g.
image graph representation). Our method can be used, as is, for
patch representation within PatchNet. PatchTable [BZL∗15] pro-
poses an efficient way to perform approximate nearest neighbor
(ANN) queries in large datasets. ANN is an orthogonal and com-
plementary task to patch representation.
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Moving beyond image patches, Schroff et al. [SKP15] proposed
a network that learns how to embed face images. The network,
termed FaceNet, learns a mapping from face images to a compact
Euclidean space where distances directly correspond to a measure
of face similarity. Standard techniques for recognition, clustering
and verification can then be used on the FaceNet feature vectors.
We take inspiration from the FaceNet architecture in Section 3.

Recently, Ponjou Tasse and Dodgson [TD16] proposed a net-
work that learns semantically meaningful shape descriptors. These
descriptors are embedded in a vector space of words which leads to
a cross-modal retrieval system.

All of the above are for specific types of images, for example
faces or stereo pairs. We were inspired by these works, and aim to
create a system that works for arbitrary image patches.

Texture Textons are an early representation of texture [Jul81] that
encode second order statistics of small patches. This motivated
extensive research on filter banks for texture classification [RH99].
Among the filters proposed are Gabor filters, wavelets and Discrete
Cosine Transform. These filters are fixed and are not learned from
data. Filter response in pyramids was used with great success for
texture synthesis [HB95,BV98]. It was later reported that raw pixel
values are as informative as filter bank response [VZ03].

Patch based methods are used with great success in various
applications such as texture synthesis [EL99], image denoising
[BCM05] and hole filling [BSFG09]. For a survey on patch-based
synthesis see Barnes and Zhang [BZ17].

Interactive image segmentation also rely on texture analysis.
For example, GrabCut [RKB04] represents the foreground and
background regions of the image using a Gaussian Mixture Model
(GMM). Pixel label is based on its distance from each GMM.
Similarly, geodesic matting [BS09] computes geodesic distance on
a probability image that is based on the distance of each pixel to the
GMM of the foreground or background. Multi-scale analysis was
used for texture synthesis [LSA∗16].

More recently, deep networks have been used to represent and
segment textures [CMK∗14, CMV15, LM16]. The method of Cim-
poi et al. [CMK∗14] explore images of textures (i.e., a single tex-
ture fills the entire image), while our approach is geared towards
natural images. In a later work Cimpoi et al. [CMV15] use the last
convolution layer of a convolutional neural network (CNN) as an
image region descriptor. Using their method to describe each im-
age patch will result in a 65K dimensional vector per patch, as op-
posed to our 128 dimensional representation. Fully Convolutional
Networks (FCNs) [LSD15] produce impressive results for pixel-
accurate tasks such as image segmentation. We compare to FCNs
in Section 4. Lin et al. [LM16] aim for invariance to categorical
variations, which is the opposite of our goal.

Image Segmentation We use the Berkley Segmentation Dataset
(BSDS500) [MFM04] to train our CNN. We demonstrate its power
on an interactive single-click image segmentation application.

Interactive image segmentation has been investigated extensively
in the past and two prime examples are GrabCut [RKB04] and
Geodesic Matting [BS09]. Both these algorithms use a Gaussian

Mixture Model to model the distribution of RGB colors in the
object and the background. In addition, they require user input in
the form of scribbles or a bounding box, similarly to other methods
(e.g., [BPK∗13]). In our application, on the other hand, we use
our features and require just a single point click from the user. We
compare to scribble-based methods in Section 4.

Single click interactive segmentation was also proposed by
Bagon et al. [BBI08] in the context of “Segmentation by Com-
position”. They define an image segment as one that can be eas-
ily composed from its own pieces, but difficult to compose from
other pieces in the image. They use this definition to extract a seg-
ment using a single user click. (Single-click segmentation should
not be confused with point supervision for training [BRFFF16].)
Xu et al. [XPC∗16] train on input images and generated click-
locations for an end-to-end supervised segmentation network. Their
implementation is not available online for comparison.

3. Patch Embedding

Our goal is to embed image patches into a low-dimensional repre-
sentation, such that l2 distances in the representation space corre-
spond to some notion of patch similarity, with a focus on textured
patches. Specifically, we would like to learn a universal embedding
operator f (p) such that for two given patches p1 and p2, the dis-
tance ‖ f (p1)− f (p2)‖2 is small if p1 and p2 are similar textures,
and large otherwise.

We use labeled images to learn the embedding in a supervised
manner. A key observation is that humans tend to “understand”
textures, thus a segmentation dataset is suitable as a guide for
texture-aware patch embedding. We use a neural network to learn
the patch embedding space. It should be noted that we aim for the
network to be applicable to all natural image patches, and not be
domain specific (e.g., face embedding [SKP15]).

During training, we deem patches that were annotated as part
of the same segment as “positive pairs” and pairs from different
segments as “negative pairs”. We use a triplet loss for training:
given an anchor patch pa which makes a positive pair with pp and
a negative pair with pn, the loss for a single triplet is defined as:

L(pa, pp, pn) = [‖ f (pa)− f (pp)‖2
2−‖ f (pa)− f (pn)‖2

2 +m]+,
(1)

where m is a margin value (set empirically to 0.2) and [x]+ is
defined as max{0,x}. The triplet loss is a sum over all anchor-
positive-negative triplets in the dataset D:

L = ∑
(pa,pp,pn)∈D

L(pa, pp, pn). (2)

Notice that while pa and pp are by definition from the same photo,
the negative example pn can be from either a different segment in
the same photo or from a different photo altogether. However, it is
crucial to select pn from the same photo, thus producing a triplet
which is closer to the separation margin, as patches from the same
photo are more likely to be correlated. Moreover, selecting the en-
tire triplet from the same photo produces a context-aware learning
mechanism. In this way, we are effectively learning an embedding
that separates patches from different segments which co-occur in

© 2017 The Author(s)
Computer Graphics Forum © 2017 The Eurographics Association and John Wiley & Sons Ltd.



O. Fried, S. Avidan & D. Cohen-Or / Patch2Vec

the same natural scene. This context-aware exemplar selection sep-
arates us from previous works. In Schroff et al. [SKP15], e.g., all
face identities are incorporated in each training batch.

A careful triplet selection is crucial for good convergence. In
each mini-batch, we use only “hard” examples for training. Specif-
ically, for each anchor-positive pair (pa, pp) we find the set N of
all negative patches pn such that the loss falls within margin m:

N (pa, pp) = {pn | ‖ f (pa)− f (pn)‖2
2−‖ f (pa)− f (pp)‖2

2 < m}.
(3)

If multiple such patches exist, we select one at random.

For ground-truth labels, we use the Berkeley Segmentation
Dataset (BSDS500) [AMFM11]. We randomly sample 50,000 32×
32 patches from each image in the BSDS500 training set. If
patches extend beyond image boundaries, we pad the original
image, repeating the boundary pixel values. We have experimented
with other patch sizes and found 32× 32 to perform well while
keeping memory overhead manageable. Figure 4 Shows results
using patches of size 16×16.

We use a similar architecture to FaceNet [SKP15] as imple-
mented by the OpenFace project [ALS16], with changes to accom-
modate the difference in patch sizes. Appendix A contains the neu-
ral network specification in Torch. More importantly, we changed
the training regime as explained above. After training most values
of f (p) are in the range [−0.3,0.3]. Over the whole dataset f (p)
follows a Gaussian distribution (µ = 0.012,σ = 0.088).

The network was trained on a (shared) Linux machine with an
Intel Xeon Processor E5-2699 v3 and a Tesla K40 GPU, for 700
epochs. Training took approximately 50 hours.

4. Evaluation

We evaluate Patch2Vec on images that were not part of the training
set and report both qualitative and quantitative results. Later on we
use Patch2Vec for single-click image segmentation. We believe that
this application is a good test bed to evaluate the quality of the
embedding because it addresses a real-world problem while using
the minimal amount of user input possible, namely a single point
click. This puts a heavy burden on the representation, which is
precisely our goal. Then we show a couple of possible extensions
to highlight the potential power of Patch2Vec.

4.1. Qualitative Evaluation

A simple way to visualize the embedding is to project the 128D
codes on the three leading principal components, producing a
pseudo-RGB image. Figure 2 shows results on a variety of images.
In particular, observe how Patch2Vec maps various textures to
uniform pseudo-RGB colors.

When a deep neural network (DNN) is used to process im-
ages, each layer or combination of layers can be considered a
form of patch embedding. Figure 3 compares our embedding to
other DNN methods (UVRL [DGE15], FCN [LSD15]). We use
the same visualization as in Figure 2. Note how our method pro-
duces similar embeddings (similar visualized color) for pixels of

the same region, unlike the other methods. When comparing to Do-
ersch et al. [DGE15] we used their pre-trained weights, and also
retrained on BSDS. We use their fc6 layer which performed the
best in our tests. Each fc6 descriptor contains 4096 values; em-
bedding a 5MP image requires more than 20 billion values. We
require 128/4096 = 3% the amount of storage. Note that UVRL is
a self-supervised method.

In Figure 3 we also show results using the relu3-4 layer
of FCN [LSD15]. Using other layers produced worse results. We
observe inferior embeddings when using FCN, which suggests
that optimizing for, e.g., label prediction, does not imply that
similar patches would have similar embeddings. On the contrary
– they can have very different embeddings, and combining the
information leads to a successful labeling. Another disadvantage
of convolutional approaches is shown in Figure 5. When stitching
several images, the different context changes the patch embeddings.
In our method, an input patch will always produce the same
embedding, even when stitched to other images or after being used
in a hole-filling operation. It is important to note that FCN is faster
than our method due to the convolutional nature of their approach.
Finding a good way to rephrase our method in a convolutional
setting is a promising direction for future work.

4.2. Quantitative Evaluation

The first experiment we report measures the capability of the
embedding to determine whether a pair of patches is part of the
same object or not. For each test image we sample 100,000 positive
pixel pairs (belonging to the same segment) and 100,000 negative
pixel pairs (belonging to different segments). For each pair (p1, p2)
we measure the distance d between the two patch embeddings

d(p1, p2) = ‖ f (p1)− f (p2)‖2. (4)

where f (p) is our patch embedding operator. Given a threshold t
we can define a binary classifier C(p1, p2) that determines whether
the patches belong to the same segment or not:

C(p1, p2) =

{
same if d(p1, p2)< t
different if d(p1, p2)≥ t

. (5)

We calculate the area under the curve (AUC) of the receiver
operating characteristic curve for all t values. Higher AUC implies
a better classifier. We apply the above procedure on the training,
validation and test sets of the BSDS500 dataset [AMFM11]; only
the training set was used in Section 3 to create our embedding.

Instead of using f (p) we can define other operators and repeat
the above procedure. In particular, we compare to:

• Raw pixels (RGB): RGB values of a given patch.
• Raw pixels (L*a*b*): CIELAB values of a given patch.
• Mean color: average patch color.
• Gabor: response of a filter bank consisting of multiple Gabor

filters at different orientations and scales.
• UVRL: fc6 layer from Doersch et al. [DGE15]. Other layers

produced lower scores.
• FCN: relu3-4 and output labels from Long et al. [LSD15].

Other layers produced lower scores. Note that l2 is not suitable
for output labels. Instead we use distance = 0 if labels match,
otherwise distance = 1.
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Figure 2: Visualizing Patch2Vec. We project the 128D embedding vectors on a 3D space and visualize it as pseudo RGB colors. Observe
how, for example, the shirt of the person at the top row on the right is mapped to a nearly constant color. We are also able to assign different
pseudo colors to the building and its reflection (top row) even though they are very similar in appearance.

Method Mean AUC

Random 0.50
FCN (relu3-4) 0.60
FCN (labels) 0.65
Gabor 0.66
Raw pixels (RGB) 0.69
Mean color 0.70
UVRL 0.70
Raw pixels (L*a*b*) 0.73
Our method (validation) 0.75
Our method (testing) 0.76
Our method (training) 0.78
Human 0.86

Table 1: Same-Not-Same Evaluation. We measure the capability
to predict if a pair of patches comes from the same segment or
not, by calculating AUC scores using l2 distance between patch
representation for prediction. We compare to established patch
representation methods (e.g., Gabor) and to representative deep
neural methods (UVRL [DGE15], FCN [LSD15]). Higher score is
better, our method outperforms the others by 0.03, which is 8% of
the total span of values between random and human prediction.

Table 1 summarizes all AUC scores. Values range between a
random selection (0.50) and human performance (0.86), which is
calculated by predicting one annotator using another (BSDS500
contains several annotations per image). Our method scores 0.76,
compared to the next best method that scored 0.73. Interestingly,
FCN produces the lowest scores, despite the success of fully

convolutional networks in tasks such as image segmentation. This
shows that optimizing for correct pixel labels is inherently different
from our goal of finding good patch embeddings.

5. Applications

We start by showing single-click segment selection and use it to
demonstrate the strength of our embedding (Section 5.1). Such a
narrow information channel between the user and the algorithm
is best suited to investigate the properties of Patch2Vec. We show
selection results, investigate selection stability given different click
locations, and compare to other selection methods. Note that we
are not claiming single-click selection to be the optimal interaction
method. On the contrary, in many cases it is preferable to supply
more clicks for better segmentation results. However, a single-click
is a good evaluation method for patch embeddings.

In Section 5.2 we extend selection to multiple images, and
introduce a super-pixel creation algorithm that uses our embedding.

5.1. Single-Click Segment Selection

Given a photo I, we calculate patch embeddings f (p) for each
32× 32 image patch in a preprocessing step. We allow patch
overlap and pad I such that the number of patches and pixels is
identical. At runtime, the user clicks a single pixel location that
corresponds to patch pc. For all other patches, we calculate the
embedding distance

dp := d(p, pc) = ‖ f (p)− f (pc)‖2 ∀p ∈ I, (6)

which yields a per-pixel distance value. Next, we threshold the dis-
tances using Otsu’s method [Ots79] to produce a binary selection
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Figure 3: Embedding comparison. Left to right: input image, the method of Doersch et al. [DGE15] with their pre-trained network weights,
the method of Doersch et al. re-trained on BSDS [AMFM11], Fully Convolutional Networks for Semantic Segmentation [LSD15], and our
embedding result. Visualization method is the same as in Figure 2. See text for details.

Figure 4: Embeddings using 16× 16 patches. Some results are
comperable to 32× 32 patches (e.g. top-right), others are inferior
(e.g. bottom-left). Input images in Figure 2.

mask. As an optional step, the mask can be refined using snakes
[KWT88] to better snap the selection to image edges.

If preprocessing runtime is a constraint, we compute an em-
bedding for pixels in K-pixel strides (horizontally and vertically),
and interpolate for the rest of the pixels. This reduces computation
time by a factor of K2. All results shown use K = 5 ; runtime is
2.6×10−4 seconds per pixel on standard hardware. Pre-processing
a 320x480 RGB image takes 40 seconds and runtime scales linearly
with the number of pixels.

Figure 6 shows single-click selection results. Importantly, the
click locations were randomly selected and not hand picked. Exam-
ining Figure 6, we notice a few interesting points. Notice how the
mask distinguishes between “real” edges and intra-texture edges.
A single click on a textured shirt or a spotted animal is enough to
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(a) (b) (c) (d) (e)

Figure 5: We demonstrate the context dependency of FCNs
[LSD15]. (a) and (e) are concatenated to create a new photo. FCN
result (c) on the concatenated photo is different from original re-
sults (b) and (d). Context dependency is useful, but can also be a
drawback. E.g., consistent embedding may be required after image
stitching, hole-filling or when operating on multiple photos. For
comparison, see our results in Figure 3 which remain identical af-
ter stitching the two image halves, by construction.

select it all. Another important property is that training on pixel-
accurate masks allows a click near the segment boundary to pro-
duce a successful mask. Notice, e.g., the white statue on the third
row. The click is adjacent to a segment boundary, which in turn
implies that the surrounding patch includes elements from several
segments. Despite that, we managed to learn that the center pixel
of the patch is a part of the statue segment.

We next want to verify that our method is robust to variations
in click locations. Figure 7 shows some qualitative examples.
Observe how different seed points lead to visually similar masks.
To quantify the notion of mask stability, we propose the following
mask stability measure. Let M1, ...Mn be n masks, where mask Mi
is a binary image that equals 1 for segment pixels and 0 anywhere
else. Let M = 1

n ∑
n
i=1 Mi be the average mask. Define:

IoUi =
∑x M(x)Mi(x)

∑x M(x)
, (7)

where x is pixel coordinate. In words, IoUi sums the pixels in M
that belong to the segment according to mask Mi, normalized by
the sum of all pixels in M. The final stability score is:

stability =
1
n

n

∑
i=1

IoUi (8)

If all masks are exactly the same the score is 1. If most masks
contain the same k pixels, while a small group of outlier masks
no� n contain a different disjoint set of k pixels, stability score is
1− 2n0/n+ 2n2

0/n2→ 1. If half the masks agree on a set of k pixels and
half agree on a disjoint set of k pixels, stability score is 0.5. Thus,
our stability score measures mask agreement, and is robust against
outlier masks.

Equipped with this stability measure, we conduct the follow-
ing experiment. For a given image and a non-trivial ground truth
segment (larger than 5% of the size of the image), we randomly
sample n = 10 seed points within the segment and use each one
independently to construct a mask, giving us a total of 10 masks

per segment. We then compute stability per segment (Equation 8)
and average over 866 image segments. For comparison, we repeat
this protocol with Diffusion Map embedding [FFL10]. Specifically,
for a given image, we compute a 128D embedding using Diffusion
Maps and then apply the protocol. Results are reported in Figure 8.
The figure shows a histogram of stability scores using both meth-
ods, as well as a typical example (top row) of an average mask for
one image. The mask stability score for the example shown in the
figure is 0.65. The average stability score, across the entire set, of
Patch2Vec is 0.54, compared to 0.40 for Diffusion Maps.

Figure 9 compares our single-click selection to several other
masking methods. A scribble based method [LRL08] can produce
plausible results, but requires several scribbles (this holds for other
scribble-based methods). Diffusion Maps does not produce good
masks, even when using the best possible time value t, measured
by comparing to ground-truth segmentation and finding the optimal
operating point of the Receiver Operator Characteristic (ROC)
curve . GrabCut [RKB04] also does not produce the expected
result, even when given a tight bounding box. Classic descriptors
such as Gabor filter banks, which historically were used to describe
textures [JF91] cannot mask the full segment via a single click. We
use 8 orientations and 16 wavelengths to produce a 128D Gabor
descriptor (same length as our embedding).

5.2. Extensions

Single-Click Image Segmentation is a core algorithm that can be
extended in a number of ways.

The first extension is to multi-image single click segmentation.
This scenario is applicable in case we have multiple images, or
a video, of some event and we want to segment the same texture
across multiple images. Given the seed pixel selected by the user,
we compute the distance, in embedding space, between the seed
pixel and all the pixels in all the images. We then proceed as
in 5.1. Results are shown in Figure 10. The sequence consists
of 82 frames and the user clicks on just a single point in the
first frame. The method can handle occlusions and appearance
changes without resorting to tracking or higher level computer
vision algorithms. This demonstrates the potential power of a
universal patch representation such as Patch2Vec.

The second extension is a super-pixel application. Super-pixels
are a mid-level image representation that is often the first step in
many image processing and computer vision algorithms.

We compare Patch2Vec to two popular super-pixels methods.
The first is SLIC [ASS∗12], that uses K-means clustering in x-y-
l-a-b space to create the segmentation. SLIC is simple to code and
quite fast, however some important edges are occasionally missed,
creating super-pixels that span two or more image segments. The
second is based on edge maps to guide the algorithm [DZ13]. Our
algorithm is similar to [DZ13] but replaces La*b* values with the
first three principle components of Patch2Vec.

Figure 11 shows a comparison between the methods. Both Dol-
lár et al. [DZ13] and our method adhere to edges better than SLIC.
Our approach is the only one that can distinguish between inter-
segment edges, that separate the target object from the background,
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Figure 6: Single-click selection results. The user clicks on a single pixel (white dot), which in turn produces a selection mask. Notice how
textured regions such as plaid clothing or butterfly wings are selected as a single region. The user can fix errors (e.g. part of a branch selected
with the butterfly) with consecutive clicks.

Figure 7: Single-click selection stability. Randomly chosen click locations (white dots) for each segment produce similar selection masks.
We show results including edge snapping (top) and without snapping (bottom). Notice how, e.g., click locations on the lizard texture include
dark and bright spots, yet the selection masks remain stable.
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Figure 8: Single-Click Selection Stability: (Top) A typical image
(left) and its average mask for a particular segment (right). The
stability score for this segment is 0.65 (see text for details). (Bot-
tom) Histogram of mask stability scores on a data set of 866 image
segments using Patch2Vec and Diffusion Maps. The average stabil-
ity score of masks generated using our method is 0.54, compared
to 0.40 obtained by Diffusion Maps.

and intra-segment edges (e.g. the notable edges on the textured fur).
Each super pixel in the figure is assigned the average RGB color of
all its pixels. Ideally, we want all super pixels of a texture to have
similar properties (e.g. same color), which will make it easier for
higher level algorithms to cluster them together.

Figure 12 shows results of our super-pixel algorithm on the NYU
Depth Dataset [NSF12]. We chose a dataset with different image
statistics from the one we trained on, to show that our network did
not overfit to a specific photo type.

6. Conclusions and discussion

Patch2Vec offers a universal embedding of image patches. The
embedding maps patches with similar textures to nearby vectors
in the embedded space. As a result, Euclidean distance in that
space corresponds to the perceptual distance of humans. This is in
contrast to common methods that define distances between patches
based on low-level analysis of the raw pixel values of the patches.

However, the implementation is still limited. We use a fairly
small training set (the BSDS500 data set). This affects the embed-
ding quality because it is bounded by the size and characteristics of
the training set. Working with more data, and with better and richer
data augmentation, can further improve the embedding. Another
problem that we currently face is that we use an image segmenta-
tion dataset to train our model. As a result we treat image segments
as having the same texture, which is not always the case in prac-
tice. This can be addressed by collecting more data geared towards
Patch2Vec.

We believe that Patch2Vec opens the door to a wide variety of
image editing applications. In particular, we demonstrate a num-
ber of possible use cases. The first is a single click segmentation
scenario, in which the user clicks a single point and the system
determines the image segment automatically, based on patch sim-
ilarities in the embedded space. We next presented a multi-image

single click segmentation where a single click in one image is prop-
agated to other images automatically. This is made possible by the
universal property of the embedding that lets us measure distances
between patches taken from different images. Finally, we have used
Patch2Vec representation for super pixel generation, by replacing
pixel RGB values with our embedding vectors.

In the future, we would like to reduce the dependency on labeled
training data, using possibly self-supervised or unsupervised tech-
niques. We would also like to explore ways to synthesize data that
will help us refine and augment the training set.
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Figure 11: Texture Aware Superpixels. We compare (a) SLIC [ASS∗12], (b1) a SLIC variant guided by edge detection [DZ13] and (c1) our
method. Both (b1) and (c1) follow meaningful edges better than vanilla SLIC (see, e.g., zoomed regions). However, our method does not
follow intra-texture edges, as can be seen when plotting the average super-pixel color in (b2) and (c2) — we get much smoother colors in the
fur region. See text for more details.

Figure 12: Super-pixel creation on the NYU Depth Dataset [NSF12]. We produce useful super-pixels, despite the fact that the dataset
statistics are different from BSDS (on which we trained).
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Figure 13: Patch2Vec neural network architecture. Note that in-
ception blocks (in black) contain many internal elements, see
Szegedy et al. [SLJ∗15] for details.
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A. Neural Network Implementation

We present the full neural network specification in Torch syntax.
It closely resembles the OpenFace [ALS16] implementation of
FaceNet [SKP15], with a few size changes to accommodate our
smaller 32×32 and 16×16 patches.

l o c a l n e t = n n . S e q u e n t i a l ( )
i f p a t c h _ s i z e == 32 then

n e t : add ( nn .Spa t i a lConvo lu t i onMM ( 3 , 64 , 7 , 7 , 2 , 2 , 3 , 3 ) )
e l s e i f p a t c h _ s i z e == 16 then

n e t : add ( nn .Spa t i a lConvo lu t i onMM ( 3 , 64 , 7 , 7 , 1 , 1 , 3 , 3 ) )
e l s e

error ( " i n v a l i d p a t c h s i z e " )
end
n e t : add ( n n . S p a t i a l B a t c h N o r m a l i z a t i o n ( 6 4 ) )
n e t : add ( nn.ReLU ( ) )
n e t : add ( n n . S p a t i a l M a x P o o l i n g ( 3 , 3 , 1 , 1 , 1 , 1 ) )

n e t : add ( nn .Spa t ia lCrossMapLRN ( 5 , 0 .0001 , 0 . 7 5 ) )
n e t : add ( nn .Spa t i a lConvo lu t i onMM ( 6 4 , 64 , 1 , 1 ) )
n e t : add ( n n . S p a t i a l B a t c h N o r m a l i z a t i o n ( 6 4 ) )
n e t : add ( nn.ReLU ( ) )
n e t : add ( nn .Spa t i a lConvo lu t i onMM ( 6 4 , 192 , 3 , 3 , 1 , 1 , 1 ) )
n e t : add ( n n . S p a t i a l B a t c h N o r m a l i z a t i o n ( 1 9 2 ) )
n e t : add ( nn.ReLU ( ) )
n e t : add ( nn .Spa t ia lCrossMapLRN ( 5 , 0 .0001 , 0 . 7 5 ) )
n e t : add ( n n . S p a t i a l M a x P o o l i n g ( 3 , 3 , 1 , 1 , 1 , 1 ) )
n e t : add ( n n . I n c e p t i o n {

i n p u t S i z e = 192 ,
k e r n e l S i z e = {3 , 5} ,
k e r n e l S t r i d e = {1 , 1} ,
o u t p u t S i z e = {128 , 32} ,
r e d u c e S i z e = {96 , 16 , 32 , 64} ,
poo l = n n . S p a t i a l M a x P o o l i n g ( 3 , 3 , 1 , 1 , 1 , 1 ) ,
batchNorm = t rue

} )
n e t : add ( n n . I n c e p t i o n {

i n p u t S i z e = 256 ,
k e r n e l S i z e = {3 , 5} ,
k e r n e l S t r i d e = {1 , 1} ,
o u t p u t S i z e = {128 , 64} ,
r e d u c e S i z e = {96 , 32 , 64 , 64} ,
poo l = n n . S p a t i a l L P P o o l i n g ( 2 5 6 , 2 , 3 , 3 , 1 , 1 ) ,
batchNorm = t rue

} )
n e t : add ( n n . I n c e p t i o n {

i n p u t S i z e = 320 ,
k e r n e l S i z e = {3 , 5} ,
k e r n e l S t r i d e = {2 , 2} ,
o u t p u t S i z e = {256 , 64} ,
r e d u c e S i z e = {128 , 32 , n i l , n i l } ,
poo l = n n . S p a t i a l M a x P o o l i n g ( 3 , 3 , 2 , 2 , 1 , 1 ) ,
batchNorm = t rue

} )
n e t : add ( n n . I n c e p t i o n {

i n p u t S i z e = 640 ,
k e r n e l S i z e = {3 , 5} ,
k e r n e l S t r i d e = {1 , 1} ,
o u t p u t S i z e = {192 , 64} ,
r e d u c e S i z e = {96 , 32 , 128 , 256} ,
poo l = n n . S p a t i a l L P P o o l i n g ( 6 4 0 , 2 , 3 , 3 , 1 , 1 ) ,
batchNorm = t rue

} )
n e t : add ( n n . I n c e p t i o n {

i n p u t S i z e = 640 ,
k e r n e l S i z e = {3 , 5} ,
k e r n e l S t r i d e = {2 , 2} ,
o u t p u t S i z e = {256 , 128} ,
r e d u c e S i z e = {160 , 64 , n i l , n i l } ,
poo l = n n . S p a t i a l M a x P o o l i n g ( 3 , 3 , 2 , 2 , 1 , 1 ) ,
batchNorm = t rue

} )
n e t : add ( n n . I n c e p t i o n {

i n p u t S i z e = 1024 ,
k e r n e l S i z e = {3} ,
k e r n e l S t r i d e = {1} ,
o u t p u t S i z e = {384} ,
r e d u c e S i z e = {96 , 96 , 256} ,
poo l = n n . S p a t i a l L P P o o l i n g ( 9 6 0 , 2 , 3 , 3 , 1 , 1 ) ,
batchNorm = t rue

} )
n e t : add ( n n . I n c e p t i o n {

i n p u t S i z e = 736 ,
k e r n e l S i z e = {3} ,
k e r n e l S t r i d e = {1} ,
o u t p u t S i z e = {384} ,
r e d u c e S i z e = {96 , 96 , 256} ,
poo l = n n . S p a t i a l M a x P o o l i n g ( 3 , 3 , 1 , 1 , 1 , 1 ) ,
batchNorm = t rue

} )
n e t : add ( n n . S p a t i a l A v e r a g e P o o l i n g ( 3 , 3 , 2 , 2 ) )
n e t : add ( nn.View ( 7 3 6 ) )
n e t : add ( n n . L i n e a r ( 7 3 6 , o p t . e m b S i z e ) )
n e t : add ( n n . N o r m a l i z e ( 2 ) )
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