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Abstract

Recent advances in machine learning and computer
graphics have made it easier to convincingly manipulate
video and audio. These so-called deep-fake videos range
from complete full-face synthesis and replacement (face-
swap), to complete mouth and audio synthesis and replace-
ment (lip-sync), and partial word-based audio and mouth
synthesis and replacement. Detection of deep fakes with
only a small spatial and temporal manipulation is particu-
larly challenging. We describe a technique to detect such
manipulated videos by exploiting the fact that the dynamics
of the mouth shape – visemes – are occasionally inconsis-
tent with a spoken phoneme. We focus on the visemes as-
sociated with words having the sound M (mama), B (baba),
or P (papa) in which the mouth must completely close in
order to pronounce these phonemes. We observe that this
is not the case in many deep-fake videos. Such phoneme-
viseme mismatches can, therefore, be used to detect even
spatially small and temporally localized manipulations. We
demonstrate the efficacy and robustness of this approach to
detect different types of deep-fake videos, including in-the-
wild deep fakes.

1. Introduction
Rapid advances in computer graphics, computer vision,

and machine learning have led to the ability to synthesize
highly realistic audio, image, and video in which anybody
can be made to say and do just about anything. With enough
sample recordings, for example, it is possible to synthesize
realistic audio in anyone’s voice [22]. With enough sam-
ple images, it is possible to synthesize images of people
who don’t exist [15, 16]. And, realistic videos can be cre-
ated of anybody saying and doing anything that its creator
wants [27, 9].

There are, of course, many entertaining and useful ap-
plications for such synthesized content – so-called deep
fakes. This content, however, can also be weaponized; it can
be used to create non-consensual pornography, to instigate
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Figure 1. Six example visemes and their corresponding phonemes.
The phonemes in the top-right (M, B, P), for example, corre-
spond to the sound you make when you say “mother”, “brother”,
or “parent”. To make this sound, you must tightly press your lips
together, leading to the shown viseme.

small- and large-scale fraud, and to produce dis-information
designed to disrupt democratic elections and sow civil un-
rest.

We describe a forensic technique for detecting a specific
class of deep-fake videos. We begin by briefly reviewing
previous work on the creation and detection of deep-fake
videos before describing our technique in more detail.

Creation: Face-swap deep fakes are the most popular form
of deep-fake videos, in which one person’s face in a video
is replaced with another person’s face. Most of these face-
swap deep fakes are created using a generative adverse-
rial network (GAN), including DeepFake FaceSwap [2],
Faceswap-GAN [4], and FS-GAN [21]. Other methods rely
on more traditional computer-graphics approaches to create
deep fakes. Face2Face [26] and FaceSwap [3], for exam-
ple, allow for the creation of puppet-master deep fakes in
which one person’s facial expressions and head movements
are mapped onto another person. Neural Textures [25] is an



video video MBP
(count) (seconds) (count)

original 79 2; 226 1; 582
A2V [24] 111 3; 552 2; 323

T2V-L [13] 59 308 166
T2V-S [13] 24 156 57
in-the-wild 4 87 66

Table 1. The number of videos, duration of videos, and total num-
ber of visemes MBP for each dataset.

image synthesis framework that combines traditional graph-
ics rendering with learnable components to create, among
other things, lip-sync deep fakes in which a person’s mouth
is modified to be consistent with another person’s speech.
This work generalizes earlier work that was designed to cre-
ate lip-sync deep fakes on a per-individual basis [24].

Unlike each of these previous techniques that require ei-
ther a visual or auditory imposter, text-based synthesis tech-
niques can modify a video on a per-word basis [13]. This
type of deep fake poses even more significant challenges for
detection, as only a small change need be made to dramati-
cally alter the meaning of a video.

Detection: There is a significant literature in the general
area of digital forensics [12]. Here we focus only on tech-
niques for detecting the types of deep-fake videos, broadly
categorized as low-level or high-level approaches.

Low-level forensic techniques detect pixel-level artifacts
introduced by the synthesis process. Some of these tech-
niques detect generic artifacts [32, 30, 31, 28], while others
detect explicit artifacts that result from, for example, image
warping [20], image blending [18] and inconsistencies be-
tween the image and metadata [14]. The benefit of low-level
approaches is that they can detect artifacts that may not be
visibly apparent. The drawback is that they can be sensi-
tive to unintentional laundering (e.g., transcoding or resiz-
ing) or intentional adversarial attacks (e.g., [8]). In addition,
these approaches are generally more effective in detecting
face-swap and puppet-master deep fakes in which the entire
face is synthesized or rendered, as opposed to lip-sync deep
fakes in which only the mouth region is synthesized.

High-level approaches, in contrast, tend to generalize
and be more resilient to laundering and adversarial at-
tacks. These techniques focus on semantically meaning-
ful features including, for example, inconsistencies in eye
blinks [19], head-pose [29], physiological signals [11], and
distinct mannerisms [6]. As with low-level techniques,
these approaches are generally most effective when con-
fronted with face-swap and puppet-master deep fakes in
which the entire face is manipulated, but are less effective
when confronted with complete mouth and audio synthe-
sis and replacement (lip-sync) [24] and partial word-based
audio and mouth synthesis and replacement [13].

Overview: We describe a forensic technique for detecting
lip-sync deep fakes, focusing on high-level techniques in or-
der to be robust to a range of different synthesis techniques
and to be more robust to intentional or unintentional laun-
dering. Our technique exploits the fact that, although lip-
sync deep fakes are often highly compelling, the dynamics
of the mouth shape – so-called visemes – are occasionally
inconsistent with a spoken phoneme. Try, for example, to
say a word that begins with M, B, or P – mother, brother,
parent – and you will notice that your lips have to com-
pletely close. If you are not a ventriloquist, you will have
trouble properly enunciating “mother” without closing your
lips. We observe that this type of phoneme to viseme map-
ping is occasionally violated, even if it is not immediately
apparent upon casual inspection. We describe how these
inconsistencies can be leveraged to detect audio-based and
text-based lip-sync deep fakes and evaluate this technique
on videos of our creation as well as in-the-wild deep fakes.

2. Methods

Datasets: We analyse lip-sync deep fakes created using
three synthesis techniques, Audio-to-Video [24] (A2V) and
Text-to-Video [13] in which only short utterances are ma-
nipulated (T2V-S), and Text-to-Video in which longer ut-
terances are manipulated (T2V-L). The A2V synthesis tech-
nique takes as input a video of a person speaking and a new
audio recording, and synthesizes a new video in which the
person’s mouth is synchronized with the new audio. The
T2V synthesis techniques take as input a video of a person
speaking and the desired text to be spoken, and synthesize a
new video in which the person’s mouth is synchronized with
the new words. The videos in the T2V-S dataset are taken
directly from the original publication [13]. The videos in
the T2V-L dataset are generated using the implementation
of [13] generalized from short to longer utterances. We also
apply our analysis to four in-the-wild lip-sync deep fakes
downloaded from Instagram and YouTube1.

For each lip-sync video, we also collected, when avail-
able, the original video that was used to create the fake. For
each video, the face in each frame was localized, aligned,
and cropped (to 256� 256 pixels) using OpenFace [7], and
resaved at a frame-rate of 30 fps. Shown in Table 1 are the
count and duration (in seconds) of the lip-sync and original
videos in our testing dataset.

Phonemes and Visemes: In spoken language, phonemes
are perceptually distinct units of sound. A viseme, the vi-
sual counterpart of a phoneme, corresponds to the mouth
shape needed to enunciate a phoneme. Shown in Fig-
ure 1 are a subset of six visemes with their corresponding

1www.instagram.com/bill_posters_uk and youtu.be/
VWMEDacz3L4

www.instagram.com/bill_posters_uk
youtu.be/VWMEDacz3L4
youtu.be/VWMEDacz3L4


Figure 2. Overview of the profile feature extraction used to mea-
sure the mouth-closed viseme. The input image is first converted
to grayscale and a vertical intensity profile is extracted from the
center of the mouth. Shown on the right is the intensity pro-
file with the location of local minima and maxima (black dots)
and their corresponding prominences measured as the height, de-
noted by the dashed horizontal lines, relative to a neighboring min-
ima/maxima.

phonemes (a single viseme may correspond to more than
one phoneme) [1].

In order to pronounce chair (CH), jar (JH), or shelf (SH),
for example, you need to bring your teeth close together
and move your lips forward and round them, causing the
teeth to be visible through the open mouth. Whereas, in
order to pronounce toy (OY), open (UH), or row (UW), the
lips again need to be rounded but the teeth are not brought
together and therefore not visible through the open mouth.
The phoneme group of M (mother), B (brother), and P (par-
ent), on the other hand, requires the mouth to be completely
closed for the pronunciation.

The specific shape of various visemes may depend on
other speech characteristics like emphasis or volume. The
M, B, P phoneme group (MBP), however, always re-
quires the mouth to be completely closed regardless of
other speech characteristics (with the exception of ventrilo-
quists). We focus, therefore, our analysis on this consistent
phoneme/viseme mapping.

Extracting Phonemes: In order to analyse a viseme dur-
ing a spoken MBP phoneme, we first extract the location of
all phonemes as follows. Google’s Speech-to-Text API [5]
is used to automatically transcribe the audio track associ-
ated with a video. The transcription is manually checked
to remove any errors and then aligned to the audio us-
ing P2FA [23]. This alignment generates a sequence of
phonemes along with their start and end time in the input
audio/video. Here, only the MBP phonemes will be consid-
ered. Shown in the last column of Table 1 are the number
of MBP phoneme occurrences extracted for each dataset.

Measuring Visemes (manual): For a given MBP occur-
rence, the associated viseme is searched in six video frames
around the start of the occurrence. We consider multiple
frames to adjust for small phoneme to audio alignment er-
rors. Only the frames around the start of the occurrence
are analysed because the mouth should be closed before the
MBP phoneme sound is made.

Given six frames for an MBP occurrence, we take
three approaches to determine if the expected mouth-close

viseme is present in any of the frames. The first approach is
purely manual where an analyst is presented with six video
frames and a reference frame from the same video where the
mouth is clearly closed. The analyst is then asked to label
each presented sequence as “open” or “closed.” A closed se-
quence is one in which the mouth is completely closed for at
least one video frame. This approach provides the ground-
truth for an automatic computational approach to determin-
ing if the mouth shape associated with a MBP phoneme is
open or closed. This type of manual analysis might also be
applicable in one-off, high-stakes analyses.

Measuring Visemes (profile): In the second approach,
a mouth-close viseme is automatically detected in any of
the six frames centered around an MBP occurrence. For
each frame, the lip region is extracted from 68 facial land-
marks [17]. The extracted lip region is rescaled to 50 � 50
pixels and converted from RGB to grayscale. A vertical
intensity profile is then extracted from the middle of the
mouth (Figure 2). We expect this intensity profile to be
qualitatively different when the mouth is open or closed.
Shown in the top middle panel of Figure 1, for example,
is a mouth open in which the vertical intensity profile will
change from skin tone to bright (teeth), to dark (the back of
the mouth), to bright (teeth), and then back to skin tone. In
contrast shown in the top right panel of Figure 1, is a mouth
closed in which the vertical intensity will be largely uniform
skin tone.

The overall profile shape is quantified by computing the
sum of the prominences of the local minima, l, and maxima,
h, in the intensity profile (as determined using MATLAB’s
findpeaks function, with the default parameters), Fig-
ure 2. The measurements l and h capture how much the
intensity along the profile decreases (e.g., when the back
of the mouth is visible) and increases (e.g., when the teeth
are visible). These measuremtns are made for each of the
six frames, li and hi; i 2 [1; 6], and compared to the
reference measurements lr and hr in which the mouth is
closed, Figure 3. The measure of similarity to a refer-
ence frame in the six-frame sequence is the minimum of
(jli � lrj+ jhi � hrj); i 2 [1; 6].

Measuring Visemes (CNN): In a third approach, we ex-
plored if a more modern learning-based approach can out-
perform the hand-crafted profile feature. Specifically, we
trained a convolutional neural network (CNN) to classify if
a mouth is open or closed in a single video frame. The input
to the network is a color image cropped around the mouth
and rescaled to a 128�128 pixels (Figure 1). The output, c,
of the network is real-valued number in [0; 1] corresponding
to an “open” (0) or “closed” (1) mouth. The open/closed
classification in a six-frame sequence is the maximum of
ci; i 2 [1; 6].
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Figure 3. Six sequential frames extracted from a single MBP occurrence in different deep-fake videos. Shown on the right is a reference
frame where the mouth is clearly closed. Shown below each frame is a 1-D intensity profile used to automatically classify the mouth
as open or close. The bounding box corresponds to a frame that matched the reference frame shown to the right (only the closed-mouth
sequences match).
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Figure 4. The number of correct MBP phoneme to viseme pairings
before (blue) and after (orange) audio to video alignment. The
T2V-L lip-sync deep fakes are the least well matched, while the
(aligned) in-the-wild deep fakes are correctly matched more than
90% of the time.

The network is trained using videos of Barack Obama
for whom the lip-sync deep fakes were created in the A2V
dataset. This training dataset consists of original videos dis-
joint from the testing videos reported in Table 1. In total, we
manually labelled 15; 600 video frames where the mouth is
open (8258 instances) or closed (7342 instances). In each
frame, OpenFace [7] is used to automatically detect, scale,
and rotate (in-plane) the face to a normalized pose and res-
olution.

The Xception architecture [10] is used to train a clas-
sifier using 90%/10% images for training/validation. The
network is trained for 50;000 iterations with a mini-batch of
size 64. In each mini-batch, equal number of images were
randomly sampled from each label. The initial learning rate
of 0:01 was reduced twice at iterations 20;000 and 40;000.
The weights were optimized using Adam optimizer and a
cross-entropy loss function.

Global Audio-to-Video Alignment: We previously used
P2FA to ensure that the phonemes were correctly synchro-
nized with the underlying audio. Here we also ensure
that the audio is correctly synchronized with the underly-
ing video. This audio-to-video alignment is done through
a brute-force search of the global shift in the audio (in the
range [�1; 1] seconds, in steps of 1=10 seconds) that creates
the best agreement between all MBP phonemes and the cor-
rect mouth-closed viseme. This alignment contends with
slight audio to video desynchronization that might occur
from transcoding or innocuous video editing.

3. Results
Detecting Deep Fakes (manually): We evaluate the effi-
cacy of detecting deep fakes first by using the manual anno-

dataset correct incorrect total
original 0:709 0:001 0:710

A2V 0:49 0:15 0:64
T2V-L 0:09 0:43 0:52
T2V-S 0:26 0:11 0:37

in-the-wild 0:64 0:05 0:69

Table 2. The average number of correct, incorrect, and total viseme
occurrences/second of video.

tation for determining if the phoneme and viseme pairing is
correct. Shown in Figure 4 are the percent of MBP phoneme
occurrences where the correct viseme is observed. For each
dataset, the percent is reported before (blue) and after (or-
ange) the global audio to video alignment. The problem of
misalignment is most salient for in-the-wild videos where
before alignment only 45:5% of the visemes were correct,
as compared to 90:9% after alignment. For each of the other
datasets, misalignment was not an issue.

For the four deep-fake data sets (A2V, T2V-S, T2V-L,
in-the-wild), the percentage of correct phoneme to viseme
pairing (after alignment) ranges from a high of 90:9% of 66
occurrences (in-the-wild), to 76:8% of 2;323 occurrences
(A2V), and 70:2% of 57 occurrences (T2V-S), and 18:7%
of 166 occurrences (T2V-L). The phoneme to viseme pair-
ing in original videos is correct for 99:7% of 1;582 occur-
rences (the small number of errors are due either to manual
annotation or transcription error).

Shown in Table 2 is the rate (per second) at which
MBP phonemes occur (total column) and the rate at which
phoneme-viseme mismatches occur (incorrect column).
The rate of spoken MBP phonemes varies from 0:71 (origi-
nal) to 0:37 (T2V-S), and so it is important to compare to the
appropriate base rate when considering overall accuracy.

Even a relatively low number of say 10% incorrect
phoneme to viseme pairings can, over time, lead to an effec-
tive detection strategy. In particular, shown in the left-most
panel of Figure 5 is the percent of videos that are correctly
identified as fake as a function of video duration, from 1 to
30 seconds. A video is detected as fake if the number of
incorrect phoneme to viseme mismatches exceeds the ex-

dataset profile CNN
original 99:4% 99:6%

A2V 96:6% 96:9%
T2V-L 83:7% 71:1%
T2V-S 89:5% 80:7%

in-the-wild 93:9% 97:0%

Table 3. The accuracy of the two automatic techniques (profile and
CNN) to detect if a mouth is open or closed. The accuracies are
computed at a fixed threshold corresponding to average false alarm
rate of 0.5% (i.e., misclassifying a closed mouth as open).
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Figure 5. Shown in each panel is the accuracy with which lip-sync deep fakes are detected using mismatchedMBPphoneme to viseme
pairings. Each solid curve (orange, green, red, and purple) corresponds to a different deep-fake dataset and the dashed curve (blue)
corresponds to the original dataset. Each panel corresponds to a different technique for determining if a mouth is open or closed. Detection
accuracy improves steadily as the length of the video increases from1 to 30 seconds.

pected mismatch of0:3%found in original video (Figure 4.
As expected, the detection accuracy increases as the video
length increases. At a length of30 seconds, for example,
nearly all of the A2V, T2V-L, and T2V-S videos are classi-
�ed correctly, while only4%of original videos are misclas-
si�ed.

Detecting Deep Fakes (automatically):We next evalu-
ate the accuracy of automatically determining if a mouth
is open or closed and how these automatic classi�cations
impact the accuracy of detecting a video as real or fake.
Throughout, the manual annotation described above are
used as ground truth.

Shown in Table 3 is the accuracy of the two automatic
techniques (pro�le and CNN) to detect if a mouth is open
or closed. Each classi�er was con�gured to have an average
false alarm rate of0:5%(i.e., misclassifying a closed mouth
as open). The performance of both the pro�le and CNN
techniques are high on the A2V dataset with an average ac-
curacy above96%. On the T2V-L and T2V-S datasets, how-
ever, the pro�le technique performs better than the CNN
which was only trained on videos of Barack Obama (some-
what surprisingly, however, the CNN generalizes to the in-
the-wild videos).

Shown in the central and right-most panel of Figure 5 is
the video detection accuracy when the manual annotation of
mouth open or closed is replaced with the automatic detec-
tion based on intensity pro�les (center) and CNN classi�ca-
tion (right). Using the pro�le technique, the video detection
accuracy is only slightly degraded as compared to the man-
ual annotation (left-most panel): at30 seconds, for exam-
ple, the manual annotation has an accuracy on the original,
A2V, and T2V-S datasets of96:0%, 97:8%, and97:4%, as
compared to the automatic pro�le technique with an accu-
racy of93:4%, 97:0%, and92:8%.

For the CNN technique, the video detection accuracy for
the original and A2V datasets remains comparable to the
manual and pro�le annotations: at30seconds, the accuracy
on the original and A2V datasets is93:4% and97:8%. For
the T2V-S dataset, however, the accuracy drops from97:4%
to 81:0%. This is because the CNN was trained only on
videos of Barack Obama exclusively in the A2V dataset,
and thus does not generalize well to different people in the
T2V-S dataset. We hypothesize that this accuracy can be
improved by training a CNN with different people.

Failures: Shown in Figure 7 are two six-frame sequences
where the pro�le technique misclassi�ed a closed mouth as
open (top) and an open mouth as closed (bottom). The �rst
failure is because the shape of the lips is different from the
reference frame. The second failure is because the mouth is
asymmetrically open. While these failure cases are some-
what inevitable when using automatic techniques, they are
easily �agged by a manual annotator.

Robustness: We next examine the robustness of the two
automatic detection techniques against two simple launder-
ing operations, recompression and resizing. Each video was
laundered usingffmpeg by: (1) reencoding at a lower
quality of qp=40(typical videos are encoded at higher qual-
ity of qp 2 [10; 20]); or (2) resizing to half-resolution and
scaling back to the original resolution (effectively, blurring
each video frame). The average accuracy of the pro�le and
CNN technique in detecting open or closed mouth after re-
compression is90:46%and88:32%. The average accuracy
of the pro�le and CNN technique after resizing is83:80%
and89:92%.

Resizing has a signi�cant impact on accuracy for the pro-
�le technique. This is because resizing reduces the promi-
nence of the local minima and maxima. As a result, the
open mouth are more likely to be mis-classi�ed as closed.



original recompressed resized

Figure 6. Shown is a closed (top) and open (bottom) mouth be-
fore (�rst column) and after recompression (second column) and
after resizing (third column). Although our automatic techniques
correctly classi�ed the closed-mouth, they misclassi�ed as closed
the recompressed and resized open mouth. A human analyst can,
however, still identify the small opening between the lips even af-
ter recompression or resizing.

For such low quality videos, therefore, manual annotation
can be more robust than the automatic detection (Figure 6).

4. Discussion

We described a forensic technique that uses phoneme-
viseme mismatches to detect deep-fake videos. Our main
insight is that while many visemes can vary, the sounds as-
sociated with theM, B, andP phonemes require complete
mouth closure, which is often not synthesized correctly in
deep-fake videos. For high-stakes cases, we show that an
analyst can manually verify video authenticity. For large-
scale applications, we show the ef�cacy of two automatic
approaches: one using hand-crafted features that requires
no large training data, and one using a CNN.

While we had good reason to look only atMBP
phonemes, we believe that including all visemes in the anal-
ysis will improve results even further. This extension, how-
ever, is not trivial and will require modeling the possible
variance of each viseme and co-articulation. It will, how-
ever, allow us to use a larger portion of a video for analysis,
ultimately leading to better detection.

Our CNN results, trained only on videos of Barack
Obama, are person speci�c and perform much better on
videos of Obama. We expect better results using a network
that is trained on a large corpus of people. Obtaining such a
large labelled dataset is challenging — especially since we
care mostly about the hard cases in which a mouth is almost
closed or open, with just a few pixel difference. Such labels
currently cannot be accurately extracted from face landmark
detectors. Thus, it would be bene�cial to develop unsuper-

vised methods to automatically differentiate between com-
plete and almost complete mouth closure.

Even with these limitations, our method can already de-
tect state-of-the-art, lip-sync deep fakes. We expect future
synthesis techniques to continue the cat-and-mouse game,
taking into more careful account the phoneme to viseme
matching. We view deep-fake detection using phoneme-
viseme mismatches as one more tool in the forensic expert
toolkit, to be developed and used together with other com-
plementary techniques.
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